Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 10 of 220 results
Title Presenter Name Sort descending Presenter Surname Area Conference year Keywords

Abstract

A multi-data integration approach was used to assess groundwater potential in the Naledi Local Municipality located in the North West Province of South Africa. The geology comprised Archaean crystalline basement, carbonate rocks (dolomite and limestone) and windblown sand deposits of the Kalahari Group. The main objective of the study is to evaluate the groundwater resource potential using multi-data integration and environmental isotope approaches. Prior to data integration, weighting coefficients were computed using principal component analysis.

The results of integration of six layers revealed a number of groundwater potential zones. The most significant zone covers ~14% of the study area and is located within carbonate rocks in the southern part of the study area. The localisation of high groundwater potential within carbonate rocks is consistent with the results of principal component analysis that suggests that lithology significantly contributed to the total data variance corresponding to principal component 1. In other words, carbonate rocks consisting of dolomite and limestone largely account for groundwater occurrence in the southern part of the area. In addition, the relatively elevated isotopic signature of tritium (≥1.0 TU)  in  groundwater  samples  located  in  the  southern  part  of  the  area  suggests  a  groundwater recharge   zone.   Furthermore,   moderate-to-good   groundwater   potential   zones   within   the Ventersdorp lava coincide with maximum concentration of fractures, which is consistent with the results of statistical correlation between borehole yield and lineament density. The multi-data integration approach and statistical correlation used in the context of evaluating groundwater resource potential of the area provided a conceptual understanding of hydrogeological parameters that control the development of groundwater in crystalline and carbonate rocks. Such approach is crucial in light of the increasing demand for groundwater arising from municipal water supply and agricultural use. The two approaches are very effective and can be used as a sound scientific basis for understanding groundwater occurrence elsewhere in similar hydrogeological environments.

Abstract

The subject mine has a policy of avoiding groundwater inflow into the underground workings due to the impact on the mine operations. It has already implemented a significant mitigation measure by excluding shallow mining and a large pillar under the river that is present in the mining area. To assess the potential for groundwater inflows into the underground mine workings as a result of a planned expansion project, Environmental Resources Management (ERM) undertook numerical groundwater modelling based on a detailed geological investigation to define the proposed mining area into high, medium and low mining risk areas with respect to potential groundwater inflow. The conceptual definitions of the mining risk areas are: 

High Risk general groundwater seepage and inflow expected in the face and roof of the mining unit from numerous joints and fractures which is regarded as serious enough to permanently halt mining operations. 

Medium Risk possibility of limited point source groundwater inflow in the face and roof of the mining unit from sporadic selective joints and fractures. Not expected to halt mining operations. 

Low Risk no significant groundwater risk to mining operations expected.

The areas identified as being potentially at risk from groundwater inflow were determined using a combination of geological mapping, ground geophysics and percussion drilling that was incorporated into a numerical hydrogeological model. The study undertaken by ERM enabled the mine to incorporate the identified mining risk zones into the early stages of the mine planning, and allowed for a significant reduction in the size of the safety pillar under the river.

Abstract

Mahed,G

On a global scale, groundwater is seen as an essential resource for freshwater used in both socioeconomic and environmental systems; therefore forming a critical buffer when droughts occur. Due to its location in a dry and semi-arid part of South Africa, Beaufort West relies on groundwater as a crucial source of fresh water. Thus, proper management of their groundwater resources is vital to ensure its protection and preservation for future generations. Although fluctuations have occurred over the years, groundwater levels in the area have progressively dropped due to abstraction in well fields. However, in 2011, an episodic flooding event resulted in extreme groundwater recharge with groundwater levels North-East of Beaufort West recovering tremendously. This led to the overall groundwater levels of Beaufort West becoming relatively higher. The general flow of groundwater in the town, which is from the Nuweveld Mountains in the North to the town dyke in the South, is dictated by dykes occurring in the area. This study aims to expand on the understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing historical data for the Gamka Dam spanning over 30 years; estimating recharge in the Beaufort West well fields caused by the flooding event; as well as studying the hydrogeological setting and lineaments in the area. It was found that sufficiently elevated recharge around the observed flooding event only occurred in areas where the correct climatic (precipitation, evaporation), geological and geographical conditions were met. Ultimately, gaining a better understanding of these recharge events should aid in the assessment of the groundwater development potential of Beaufort West.

Abstract

Monitoring groundwater storage is conducted in the study. World Health Organisation estimates, about 55 million people affected by drought yearly. However, Surface water holds 0.3 percent of the freshwater, and groundwater holds 30.1 percent of the freshwater. Hence, monitoring groundwater storage is vital. Though the GRACE (Gravity Recovery And Climate Experiment) satellite provides global-scale groundwater data, but does not provide any information about changes in groundwater flow systems and has uncertainties, due to large noise produced. A correlation has to be established between gravity changes and groundwater storage variations through a program that simulates the flow of groundwater. The relationship between developed numerical models and data derived from superconducting gravity is imperative. This study is conducted in South African Geodynamic Observatory Sutherland (SAGOS) area at Sutherland, South Africa. The study aims to develop a numerical geohydrological model to monitor subsurface variations in water distribution through superconducting gravimeters (SG) records. The interpretation of the SG measurements to directly compare to one another at a higher resolution is considered in the study, through the correlation of the developed model and installed superconducting gravimetric residual data. A numerical groundwater flow model is developed using model muse on MODFLOW. Assigned boundary conditions, fractured rocks were activated by the model. Hydraulic conductivities were simulated for any layer, including storage coefficient. Hence, hydraulic conductivity is an important aspect of the study. In conclusion, gravity is an excellent tool for measuring groundwater recharge within the immediate vicinity of the SAGOS. This implies that gravity can aid in monitoring groundwater recharge and discharge in semi-arid areas. The application of the hydrological model at various scales comparing the Superconducting Gravimeter and GRACE satellite data is paramount to improve modelling groundwater dynamics. The consideration of developing numerical hydrological to monitor groundwater storage will add much value to missing information.

Abstract

The North West Province has produced a large portion of South Africa’s inland alluvial diamonds. Kimberlite intrusions are typically the parent source for the alluvial diamonds. Diamondiferous kimberlite intrusions were eroded over time by surface run-off and streams which transport the diamondiferous sediments downstream to depositional regimes. The diamondiferous alluvial deposits around Schweizer- Reneke were mostly deposited on magmatic rock of the Ventersdorp Supergroup. Formal alluvial mining in the area often requires a considerable amount of overburden material to be removed in order to access the coarser gravel beds which contain the economic grade diamonds. Diamond production from secondary sources in this region totalled approximately 14.4 million carats up to 1984, and small scale production persists today. The case study focuses on the impacts of alluvial diamond mining operations on surface- and groundwater resources in the North West Province, South Africa. To recover diamonds from the sediments, the industry is currently focussing on using modern processing methods and a more clinical approach to increase the sustainability of mining, therefore minimizing the impact on the environment. Wastewater from the screening and the fines management phase is delivered to the primary water treatment phase where up to 70% of process water is recirculated to the processing plant, minimising the volumes of fresh water required. The settled sludge or waste is deposited on a tailings storage facility. Alluvial diamond mining operations, unlike many other industrial processes and types of mining, have a lower environmental hazardous risk associated with waste material, however, it is a possibility that leachate emanating from tailings often have a high salt content. The process raw water to these operations are supplied from both surface- and groundwater sources from the local area. Supplying processing raw water in a sustainable manner is often a challenge in drought stricken areas with limited surface flow and low aquifer potential.

Abstract

The significance of a reliable groundwater resource assessment is of growing importance as water resources are stretched to accommodate the growing population. An essential component of a groundwater resource assessment is the quantification of surface water–groundwater interaction. The  insufficient  amount  of  data  in  South  Africa  and  the  apparent  lack  of  accuracy  of  current estimates of the groundwater component of baseflow lead to the investigation of a new method. This applicability of this new approach, the Mixing Cell Model (MCM), to quantify the groundwater contribution to baseflow is examined to assess whether the method would be of use in further groundwater resource assessments. The MCM simultaneously solves water and solute mass balance equations  to  determine  unknown  inflows  to  a  system,  in  this  application  the  groundwater component of baseflow. The incorporation of water quality data into the estimation of the surface water–groundwater  interaction  increases the  use of  available  data,  and  thus has  the  ability to increase the confidence in the estimation process. The mixing cell model is applied to datasets from the surface water–groundwater interaction test site developed by the University of the Free State, in addition to data collected along the middle Modder River during a fieldwork survey. The MCM is subsequently applied to a set of quaternary catchments in the Limpopo Province for which there are available calibrated estimates of the groundwater component of baseflow for the Sami and Hughes models. The MCM is further applied to the semi-arid quaternary catchment D73F to assess the applicability of the mathematically-based MCM in a flow system within a regionally-defined zero groundwater  baseflow  zone.  The  results  indicate  that  the  MCM  can  reliably  estimate  the groundwater component of baseflow to a river when sufficient data are available. Use of the MCM has  the  potential  to  evaluate  as  well  as  increase  the  confidence  of  currently  determined groundwater baseflow volumes in South Africa, which will in turn ensure the responsible and sustainable use of the countries water resources.

Abstract

A coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood.

Abstract

The importance of groundwater in South Africa has become evident over the past decades, especially as pressure on surface water resources intensifies in response to increasing water supply demands. Research has significantly progressed on the shallow groundwater resources conventionally used for water supply, and leading on from this deeper groundwater resources have become a focus point as a future water source. This focus on deep aquifers is driven by new developments, such as shale gas development, injection of brines into deep aquifers, carbon sequestration and geothermal energy. The understanding of deep groundwater in South Africa is often limited due to insufficient data at these depths. To develop a body of knowledge on deep geohydrology in South Africa, an investigation on the currently available information was launched to assess potential deep groundwater resources. The investigation formed part of the larger WRC Project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). The geology of South Africa was reviewed from a deep groundwater perspective to provide an initial analysis of potential deep groundwater aquifers. The main potential deep aquifers were identified for further investigation using a ranking system, where Rank 1 shows a positive indication, Rank 2 shows some indication, Rank 3 shows a neutral indication, and Rank 4 shows a negative indication for deep groundwater systems. The Rank 1 geological groups include (in no particular order): the Limpopo Belt, Witwatersrand Supergroup, Transvaal Supergroup, Waterberg and Soutpansberg Groups, Natal Group, Cape Supergroup, Karoo Supergroup. In a number of the identified potential deep aquifers, the indicator for deep groundwater flow systems was the presence of thermal springs. Additionally, deep groundwater occurs below the traditionally exploited weathered zone, and the importance of fractured aquifers becomes paramount in the investigation of potential deep aquifers. In conclusion, three main components were considered for the investigation of potential deep aquifers systems, 1) geological groups; 2) thermal springs and 3) depth of fractures. These three components should be used holistically going forward to best characterise the potential deep aquifers of South Africa.

Abstract

Soil and water pollution are major environmental problem facing many coastal regions of the world due to high population, urbanisation and industrialisation. The hydrofacies and water quality of the coastal plain-sand of part of Eastern Niger-Delta, Nigeria, was investigated in this study. Hydrogeological investigations show that the aquifers in the area are largely unconfined sands with intercalations of gravels, clay and shale which are discontinuous and, however, form semi-confined aquifers  in  some  locations.  Pumping  test  results  show  that  the  transmissivity  ranged  between 152.0 m2/day  and  2 835.0 m2/day  with  an  average  value  of  1 026.0 m2/day,  while  the  specific capacity varied between 828.0 m3/day and 15 314.0 m3/day with a mean value of 6 258.0 m3/day. Well-discharge  ranged  between  1 624.0 m3/day  and  7 216.0 m3/day  with  an  average  value  of 3 218.0 m3/day, while hydraulic conductivity varied between 3.2 m/day and 478.4 m/d with a mean value of 98.6 m/day. These findings indicate that the aquifer in the area is porous, permeable and prolific. The observed wide ranges and high standard deviations and mean in the geochemical data are evidence that there are substantial differences in the quality/composition of the groundwater within the study area. The plot of the major cations and anions on Piper, Durov, and Scholler diagrams indicated six hydrochemical facies in the area: Na-Cl, Ca-Mg-HCO3, Na-Ca-SO4, Ca-Mg-Cl, Na-Fe-Cl and Na-Fe-Cl-NO3. Heavy metal enrichment index revealed 12 elements in the decreasing order of: Fe > Ni > Cu > Zn > Mn > Cd > V > Co > Pb > Cr > As > Hg. The study identified salt intrusion, high iron content, acid-rain, hydrocarbon pollution, use of agrochemicals, industrial effluents and poor sanitation as contributors to the soil and water deterioration in the area. Saltwater–freshwater interface occurs between 5 m to 185 m, while iron-rich water is found between 20 m to 175 m. The first two factors are natural phenomenon due to the proximity of the aquifer to the ocean and probably downward leaching of marcasite contained in the overlying lithology into the shallow water table, while the last four factors are results of various anthropogenic activities domiciled in the area. The DRASTICA model, a modification of the DRASTIC model, was developed and used in the construction of the aquifer vulnerability map of the area. Modern sanitary landfill that ensures adequate protection for the soil and groundwater was designed and recommended to replace the existing  open-dumpsites.  Owing  to  the  monumental  and  devastating  effects  of  hydrocarbon pollution in the area, the need to eradicate gas-flaring and minimise oil spills in the area was advocated. Bioremediation and phytoremediation techniques were recommended to be applied in the clean-up of soils and water contaminated with hydrocarbon in the area.

 

Abstract

To date, South Africa has mined approximately 3.2 billion tons of coal from a number of different coal reserves located in various parts of the country. A large number of the mines have reached the end of their productive life, resulting in numerous mine closures. With closures, groundwater levels have rebounded, resulting in decant of mine water into the environment. This paper describes a case study of a closed underground coal mine, the rebound of water levels, the evolution of the groundwater quality and the impact it has had on the management of the potential decant.

On closure of the Ermelo Mines in 1992, initial water quality monitoring indicated that a water treatment plant would be required to treat the mine decant. However, as the groundwater levels in the mine rebounded, the water quality in the mine void evolved from sulphate type water to sodium type water. The evolution of the water quality can be attributed to sulphate reducing bacteria, vertical recharge from the hanging aquifer and stratification. Water level and quality monitoring have shown that the water in the old mine void will not decant to surface due to the depth of the mine void, hydrogeological conditions, a "hanging aquifer"  and the recharge mechanisms. As a result, no water treatment will be required and the mine will not impact on the surface water. The main applications from this paper are:

  •  Design  of  a  correct  monitoring  procedure  to  allow  for  monitoring  of  water  quality stratification in rebounding mines.
  •  Identifying the role of sulphate reducing bacteria in the evolution of groundwater quality in a methane rich coal mine void.
  •  The role of a hanging aquifer in recharging of a coal mine void and resultant stratification. 
  • Designing of a mine taking into consideration mine closure.

The main contribution of this paper is the use of hydrogeological information in design of a coal mine so as not to decant on closure.