Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 151 - 200 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Due to technical, social, and economic limitations, integrated groundwater management presents a significant challenge in developing countries. The significance of this issue becomes even more pronounced in groundwater management, as this resource is often overlooked and undervalued by decision-makers due to its status as a “hidden resource,” despite the fact that it provides multiple ecosystem services. This study aims to establish the technical hydrogeological foundation in rural basins of central Bolivia through alternative, simplified, and cost-effective methods and tools. The study includes applying geophysical techniques, such as Electrical Resistivity Tomography, to determine the conceptual hydrogeological model of a micro-basin. In addition, a soil water balance approach was applied, characterizing 24 biophysical variables to identify groundwater recharge zones, while global circulation models provided a substitute for unreliable meteorological data. Furthermore, a participatory model was developed to identify recharge areas in upper basin areas within the framework of developing a municipal policy for their protection. The participatory model included local knowledge in all stages of methodology development, considering the characteristics of the local plant communities and the spatial distribution of local rainfall. The research findings have already contributed to resolving socio-environmental conflicts in Bolivia and establishing a foundation for effective water governance by empowering local rural communities. This study has demonstrated the feasibility of using alternative, simplified, and low-cost methods and tools to establish the technical hydrogeological basis, which can inform public policies to promote sustainable groundwater management in developing countries.

Abstract

The joint application of water supply system security, groundwater modelling, and multicriteria analysis (MCA) indicated the potential of Managed Aquifer Recharge (MAR) to increase water supply security in Eastern Botswana substantially. Botswana faces increased water stress due to decreased water availability as climate change exacerbates variability in rainfall and increases evaporation losses and water demand. The water supply for Eastern Botswana is based on the bulk water supply system of the North-South Carrier (NSC) connecting dams in the northeast to the main demand centres, including Gaborone. The potential of MAR to increase the water security of the NSC by storing water that otherwise would have been lost to spillover and evaporation and contribute to the provision of water during droughts was studied. Large-scale MAR in the Ntane sandstone aquifer at a wellfield by the NSC was evaluated in terms of hydrogeology and national water supply perspective. Comprehensive hydrogeological surveys and assessments included borehole injection tests and hydrogeological and geochemical modelling to evaluate risks of losing recharged water and clogging of boreholes. Probabilistic water supply system modelling analysed the impact of different MAR scenarios on the water supply security of the NSC, and an MCA tool assessed the sustainability of the different scenarios. The analysis showed that large-scale MAR is feasible, and a scheme with a capacity of 40,000 m3 /d is the most sustainable from technical, social, economic and environmental perspectives and could potentially reduce the number of months with water shortage by 50% in Gaborone.

Abstract

Two numerical simulations using Feflow® software were conducted to demonstrate the utility of geophysical data to accurately determine groundwater levels and provide additional data to the groundwater modelling community to improve the model’s accuracy. One simulation is based on regional piezometric data, and the other uses geophysical data acquired through transient electromagnetic (TEM), electrical resistivity (ERT), and ground-penetrating radar (GPR) surveys. After both numerical analyses, the root mean square errors (RMS) obtained from the piezometric data and the multiple geophysical techniques to confirm the correlation between observed and simulated water levels were similar at 3.81 m and 2.76 m, respectively. Through a discrete modelling approach, this study shows that groundwater levels estimated using geophysical tools and methods and those determined by direct observation are comparable. In addition, before the 3D numerical flow model, a 3D geological model was built to fully represent this highly complex, heterogeneous, and anisotropic hydrological environment of the Saint-Narcisse moraine glacial deposits in eastern Mauricie, Québec. This stratigraphic reconstruction with Leapfrog software was necessary to provide a more detailed and realistic representation of this complex aquifer system. This study illustrates how geophysical data can complement direct observations to provide additional hydraulic information to hydrologic modellers. Geophysical surveys provide an extensive set of soft data that can be leveraged to improve groundwater flow models and determine water-table heights, particularly in areas characterized by limited direct piezometric information.

Abstract

Groundwater systems are complex and subject to climate change, abstraction, and land use stresses, making quantifying their impacts on aquifers difficult. Groundwater models aim to balance abstraction and aquifer sustainability by simulating the responses of an aquifer to hydrological stresses through groundwater levels. However, these models require extensive spatial data on geological and hydrological properties, which can be challenging to obtain. To address this issue, data-driven machine learning models are used to predict and optimize groundwater levels using available data. This paper argues that using machine learning to model groundwater level data improves predicting and optimizing groundwater levels for setting up a managed aquifer recharge scheme. The West Coast Aquifer System in South Africa was used as a case study. The neural network autoregression model was used for the analysis. Multiple variables such as rainfall, temperature, and groundwater usage were input parameters in the mode to facilitate predictions. Outputs from the model showed how machine learning models can enhance the interpretation of observed and modelled results on groundwater levels to support groundwater monitoring and utilization. In areas with high dependence on groundwater and where data on abstraction (use) and monitoring were scarce, results showed that feasible measures were available to improve groundwater security. Although the simulation results were inconclusive, the results provided insights into how the use of machine learning can provide information to inform setting up a managed aquifer recharge scheme.

Abstract

Deploying a participatory approach for surveying the complex geohydrological system and defining the status of the groundwater resources in the Kunzila catchment area has crucial importance towards conjunctive use of its water and land resources for sustainable economic growth, social well-being, and environmental protection. Several initiatives are being undertaken to pilot the ‘Integrated Landscape Management and WASH’ project in this community to implement evidence-based approaches. A comprehensive hydrogeological study has been carried out to understand the hydrogeological system, propose ecosystem restoration measures, identify suitable locations for drilling boreholes and design a groundwater and surface water monitoring network.

The first results pointed out the central area of the catchment as holding the best potential for groundwater abstraction, a productive Late Quaternary basalt aquifer. As this area is in use by private floriculture farms, several other borehole locations were sited to meet the domestic and livelihood demand across the watershed. In addition to the drinking water supply goals, the project proposed catchment intervention for soil and water conservation based on the Landscape Approach and 3R measures implementation - Retain, Recharge, Reuse. Such measures include but were not limited to riparian vegetation restoration, terracing and contour bunds, agroforestry, controlled grazing, etc. A telemetric monitoring network has been designed and installed to support the conjunctive management of shallow and deep groundwater water resources, streams and Lake Tana, together with a functional dashboard for data registrations and sharing. The monitoring program gauges the impact of groundwater abstraction and the quality parameters.

Abstract

In the context of climate change, this work aims to model the piezometric levels of the foothill aquifer located in the middle-high Brenta river plain (Veneto, Italy) to support managing a groundwater system that provides drinking water for most of the Veneto Region. Using a Data-Driven approach, predictive Multiple Linear Regression Models were developed for the piezometric level at different wells, and scenarios of groundwater level evolution were achieved under dry periods. Results highlighted the high sensitivity of the aquifer to climate extremes, as well as the need to plan actions for mitigating the effects on such a strategic water supply system. Groundwater hosted in the foothill aquifer represents an important resource. However, these systems are highly sensitive to the variation of Meteo-climatic regimes. At the same time, the exploitations can lead to excessive groundwater drawdown and consequent threats of water scarcity. The Data-Driven approach adopted using long time series of meteorological, hydrometric and piezometric data can represent a valid example in these terms. The groundwater level evolution has been well-reproduced by these models. The equations describing models show the close dependence of groundwater from the Brenta River and the high sensitivity of the aquifer to meteo-climate regimes. Given this sensitivity, the forecast of groundwater level evolution under a dry period, similar to 2022, was performed. Results point out a progressive drawdown of groundwater level. These predictive models can be useful for local authorities to maintain these levels over specific critical values.

Abstract

Water budget assessment and related recharge in karstified and fractured mountainous aquifers suffer a large uncertainty due to variable infiltration rates related to karst features. The KARMA project (karma-project.org), funded by the European Commission, has addressed this knowledge gap. The increase in human withdrawals and the effect of climate change can modify the recharge rate and, consequently, the spring discharge. The regional aquifer of Gran Sasso mountain, Central Italy, has been investigated by monitoring spring discharge isotope composition and calculating the inflow using a GIS approach on 100x100 m cells, considering local conditions, including karst features. The results for the 2000-2022 period highlight the preferential recharge area of the endorheic basin of Campo Imperatore (up to 75% of precipitation) and a mean infiltration of about 50% of rainfall. Different methods applied for recharge evaluation (Turc, Thornthwaite and APLIS) agree with a recharge rate close to 600 mm/year. This amount roughly corresponds to the spring discharge, evidencing: i) a “memory effect” in spring discharge, which is higher than previewed during dry years; ii) a variation in discharge due to rainy and drought year distribution, frequently recorded at springs with delay (1-2 years); iii) no significant trends of spring depletion since last 20 years; iv) the risk of lowering of snow contribution to recharge due to the temperature rise. The results provide updated information to the drinking water companies and the National Park Authority for sustainable management of the available groundwater resources.

Abstract

POSTER Since June 2010 and still ongoing today, the Lower Orange River Valley has experienced over a 1168 tremors(a) and earthquakes in the vicinity of Augrabies. Of these 1168 tremors, 71 quakes registered above 3 on the Richter scale and on 18 December 2011, the area was struck with an earthquake that registered 5 on the Richter scale. Four thermal springs are also located near this earthquake zone and the temperature of the water have a range of between 38?C -46.6?C, according to Kent LE. (1949/1969). 25?C is the division between thermal and non-thermal waters and the thermal gradient for the Riemvasmaak area(b) is 24?C, clearly indicating that the four springs are thermal when looking at the temperature difference. The Department of Water Affairs has been monitoring these springs monthly since 2011 and has been taking field measurements and chemical analyses. The aim of this study is a) to see if the tremors and earthquakes have an effect on the chemistry of the thermal springs, b) to create a data set for the thermal springs, as these springs was recorded and mentioned in Kent LE. reports of 1949 and 1969 but no samples were collected and analysed, c) to see if the water source for the groundwater in the area and the thermal springs are connected and d) to see if the recent floods may have had an influence on the earthquake zone seeing as the Orange River runs through the zone. The following sources are used to describe the earthquakes and water quality: (a) Earthquake data from the Council of Geosciene (b) ZQM data on NGA temp range between 21-28?C depending on the season with 24?C being the mean.

Abstract

The study focuses on the overlapping effects of low-enthalpy geothermal plants in urbanized areas, showing the importance of quantifying thermal groundwater exploitation to manage the resource adequately. Geothermal energy connects groundwater use to one of the ever-growing needs nowadays: energy. For low-temperature geothermal, the form of energy we can harness is thermal energy for building heating or cooling, one of the most polluting sectors, representing 34% of CO2 emissions in Europe. As in the main European cities, geothermal energy use is constantly growing, and understanding the status of groundwater exploitation for geothermal purposes is essential for proper resource management. To this end, the study’s first phase focused on quantifying geothermal use in the study area selected in Milan city-Italy.

Knowing the characteristics of geothermal plants in the area allows us to understand the extent of the resource exploitation and the consequences of its mismanagement at a large scale. In fact, the plant designers often focus on the local scale, not considering the presence of neighbouring plants, which risks decreasing the plant’s efficiency or amplifying its subsurface thermal effect. To minimize the thermal effects/interferences of geothermal plants in the subsoil, the study of the application of D-ATES systems (Dynamic Aquifer Thermal Energy Storage) with significant groundwater flow is promising. A numerical model of the study area is then implemented with MODFLOW-USG for thermal transport in porous media to evaluate the advantages of installing D-ATES systems instead of typical open-loop systems.

Abstract

Groundwater is a critical resource in Namibia, particularly in the Kunene and Omusati Regions, which are among the driest in Sub-Saharan Africa. Hydrogeological mapping is essential to ensure this resource’s sustainable use and management. The hydrogeological map of Namibia was updated recently (2021). However, the details of a 1:1M map are too coarse for regional groundwater management. An ongoing study of groundwater potential assessment in the two regions required downscaling the information to 1:250 000. This work made use of geological maps 1:250 000 from the Geological Survey of Namibia, about 430 selected wells including 20 recent boreholes, 117 reinterpreted pumping tests, some existing reports from private companies, academic works including a PhD thesis, interviews with local water resource experts and statistical analysis of 6 500 wells from the National Groundwater Database (GROWAS II) maintained by the Ministry of Agriculture, Water and Land Reform (MAWLR). The regional hydrogeological map obtained was then associated with the recharge evaluated in a separate task of the same project to assess the available groundwater sustainability. By assessing abstraction costs and water demand, the work gives insights into areas where groundwater abstraction can be increased or restricted to ensure sustainable use. As conscientious and serious as this study may be, it does not replace a master plan but allows a global vision of the development potential of groundwater at a regional scale. This study was financed by the French Agency for Development (AFD) under a tripartite agreement (MAWLR-MEFT-AFD).

Abstract

Source protection area delineation has evolved over the last decades from fixed radius, analytical and numerical methods which do not consider uncertainty to more complex stochastic numerical approaches where uncertainties are often considered in a Monte Carlo framework. The representation of aquifer heterogeneity in these studies is typically based on a geostatistical representation of hydraulic properties. This presentation compares results from complex stochastic flow and transport simulations, simple homogeneous models, and existing analytical expressions. As a case study, we use the existing drinking supply wells in West Melton located Canterbury’s Selwyn District in New Zealand. Monte Carlo realisations are parameterised in MODFLOW6 so that the prior knowledge of the aquifer’s effective, large scale flow characteristics is honoured. Homogenous simulations are based on the same grid, using the aquifer’s effective properties to parameterise the numerical flow model. In both cases, conservative transport of pathogens is undertaken using Modpath7, using both forward and backward particle tracking. The numerical results are compared with analytical expressions from the international literature. Our results suggest that aquifer heterogeneity needs to be explicitly addressed in all cases. Homogeneous simulations almost certainly underestimate contamination risk and produce unrealistically small source protection areas. Parameterisation of the stochastic heterogeneous realisations also affects the size and extent of the source protection area, suggesting that these need to be carefully considered for practical applications.

Abstract

A groundwater monitoring network surrounding a pumping well (such as a public water supply) allows for early contaminant detection and mitigation where possible contaminant source locations are often unknown. This numerical study investigates how the contaminant detection probability of a hypothetical sentinel-well monitoring network consisting of one to four monitoring wells is affected by aquifer spatial heterogeneity and dispersion characteristics, where the contaminant source location is randomized. This is achieved through a stochastic framework using a Monte Carlo approach. A single production well is considered, resulting in converging non-uniform flow close to the well. Optimal network arrangements are obtained by maximizing a weighted risk function that considers true and false positive detection rates, sampling frequency, early detection, and contaminant travel time uncertainty. Aquifer dispersivity is found to be the dominant parameter for the quantification of network performance. For the range of parameters considered, a single monitoring well screening the full aquifer thickness is expected to correctly and timely identify at least 12% of all incidents resulting in contaminants reaching the production well. Irrespective of network size and sampling frequency, more dispersive transport conditions result in higher detection rates. Increasing aquifer heterogeneity and decreasing spatial continuity also lead to higher detection rates, though these effects are diminished for networks of 3 or more wells. Earlier detection, critical for remedial action and supply safety, comes with a significant cost in terms of detection rate and should be carefully considered when a monitoring network is being designed.

Abstract

A mapping series was generated using the Vanrhynsdorp aquifer system to illustrate an improved standardization groundwater monitoring status reporting, that includes a progressive conceptual site model linked with spatial and temporal groundwater monitoring network assessment on an aquifer scale. The report consists of 4 segments: Base map provides a conceptual site model of a groundwater resource unit (GRU) delineating an area of 1456 km2 representing the geology and geological structures that make up the Vanrhynsdorp aquifer system.

The Groundwater Availability Map illustrated over a long-term trend analysis, the measured water levels indicate an 83% decreasing trend over an average period of 21.83 years, the water levels have declined by an average linear progression of 11.54 m (ranging 0.48-35.76 m) or 0.64 m per year, which equates to an estimated decline in storage of 218 Tm3 - 21 Mm3 within the GRU. The Groundwater EC map illustrated over the long-term analysis of an average period 24 years the average EC ranged between 57 - 791 mS/m, with certain areas tracking at a constant increasing trend beyond 1200 mS/m. The Groundwater Quality Characterization map provides EC contours and spatial Stiff diagram plots. The Stiff diagrams illustrate three aquifer water types namely, Na-Cl (Table Mountain Group Sandstones), Na-Cl with high SO4 concentration (Blouport and Aties Formation) and Na-Cl-HCO3 (Widouw Formation). These four segments of information products inform Resource Quality Objectives and the need for surveillance monitoring in conjunction with annual compliance monitoring and enforcement groundwater use audits.

Abstract

The current study investigates the spatial patterns and temporal dynamics of the groundwater and surface water interactions for integrated water resource management practices. This follows the results of the groundwater flow conceptual and numerical models developed for the Middle Letaba sub-catchment, indicating that groundwater and surface water interactions play a fundamental role in determining the hydrological water balance. The study area is an example of a fully allocated surface water resource in the northeastern part of South Africa, extensively developed for domestic use and agricultural farming. As a result of the semi-arid nature of the climate, limited surface water resources and increasing water demand, the situation has contributed to groundwater as the only dependable source of water supply for various uses. However, in the last few decades, periodic water level measurements in several boreholes indicated a continuous drop in the piezometric surface over time. This study utilised HydroGeoSphere to simulate water flow processes in a fully integrated and physically based model.

The results of the steady-state groundwater flow simulation indicated that recharge from the rainfall and river leakages are the most important components of the inflows that control the availability of groundwater. Water resources management scenarios suggest a continuous decline in water level, which strongly influences the groundwater flow dynamics and future availability of fresh water. Regular monitoring and management of groundwater level and abstraction are required to avoid overexploitation and possible groundwater contamination due to the strong interaction between surface water and groundwater.

Abstract

Globally, rivers, lakes and groundwater face complex anthropogenic water quality alterations posing risks to human health, food security and ecosystems. The World Water Quality Alliance (WWQA) forms an open, global consortium, pooling expertise on water quality science and technology innovation and providing a participatory platform for water quality assessments and co-designing tailored and demand-driven services. It addresses priority topics relevant to water governance, scalable water solutions and emerging issues in water management. The African Use Cases provided an initial testbed that puts the quality of surface water and groundwater into the context of the local 2030 Agenda and its multiple linkages across the Sustainable Development Goals. Central to the initial Africa Use Cases was the integration of in-situ, remote sensing-based earth observation and modelling data to derive the best possible current state of water quality (baseline). Of the three African Use Cases, “Cape Town’s Major Aquifer Systems” focused mainly on groundwater quality in an urban environment. One of the success factors for the Cape Town Aquifer Use Case was the ability of the team to integrate the three different data types of the triangle approach on a sub-catchment scale. This required understanding the complex surface and groundwater systems and their interaction (flow paths and fluxes) in the urban environment. A robust stakeholder engagement process and the introduction of transformative art also drove the success of the Cape Town Use Case. The outcomes of this process will be presented and discussed in this presentation.

Abstract

Aquifer test analysis is complex, and in many regards, the interpretation resembles an art more than a science. Under the best circumstances, aquifer test analysis is still plagued by ambiguity and uncertainty, compounded by the general lack of information on the subsurface. An approach which has seen widespread adoption in other fields that need to classify time series data is machine learning. A Python script that generates numerical groundwater flow models by interfacing directly with the modelling software produces training data for deep learning. Production yielded 3,220 models of aquifer tests with varying hydrogeological conditions, including fracture, no-flow and recharge boundary geometries. Post-processing exports the model results, and the Bourdet derivative is plotted and labelled for image classification. The image classifier is constructed as a simple three-layer convolutional neural network, with ReLU as the activation function and stochastic gradient descent as the optimizer. The dataset provided sufficient examples for the model to obtain over 99% accuracy in identifying the complexities present inside the numerical model. The classification of groundproofing data illustrates the model’s effectiveness while supporting synthetically prepared data using modern groundwater modelling software.

Abstract

The devastating socioeconomic impacts of recent droughts have intensified the need for improved drought monitoring in South Africa (SA). This study has shown that not all indices can be universally applicable to all regions worldwide, and no single index can represent all aspects of droughts. This study aimed to review the performance and applicability of the Palmer drought severity index (PDSI), surface water supply index (SWSI), vegetation condition index (VCI), standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), standardised streamflow index (SSI), standardised groundwater index (SGI), and GRACE (Gravity Recovery and Climate Experiment)-based drought indices in SA and provide guidelines for selecting feasible candidates for integrated drought monitoring. The review is based on the 2016 World Meteorological Organization (WMO) Handbook of Drought Indicators and Indices guidelines. The PDSI and SWSI are not feasible in SA, mainly because they are relatively complex to compute and interpret and cannot use readily available and accessible data. Combining the SPI, SPEI, VCI, SSI, and SGI using multi-index or hybrid methods is recommended. Hence, with best fitting probability distribution functions (PDFs) used and an informed choice between parametric and non-parametric approaches, this combination has the potential for integrated drought monitoring. Due to the scarcity of groundwater data, investigations using GRACE-based groundwater drought indices must be carried out. These findings may contribute to improved drought early warning and monitoring in SA.

Abstract

Hermanus was originally supplied from springs and groundwater until the De Bos Dam was built in the 1950s. Due to increasing water demand, the municipality commenced wellfield development in 2002. The first wellfield comprised 3 boreholes, of which one borehole was later decommissioned due to reduced yield. Three additional boreholes were drilled recently to ensure abstraction capacity within the licence limits. A second wellfield was developed in the Hemel-en-Aarde Valley north of Hermanus. To ensure the sustainable management of the shared resource and minimise environmental impacts, a monitoring committee was established with all relevant roleplayers, other users, civil society, environmental groups and various commenting and regulatory authorities. A comprehensive monitoring network was established to assist with the scheme’s management and ensure that environmental impacts are minimized. The long-term monitoring (up to 20 years) shows that the groundwater abstraction from the Gateway Wellfield does not impact the environment and other users or increase the risk of saline intrusion. Identified impacts have been mitigated with the assistance of the monitoring committee. The municipality aims to provide at least half of the town’s water demand from groundwater and establish conjunctive use operation between surface water from the De Bos Dam and groundwater from these wellfields. The wellfields ensured sufficient water for the municipality when De Bos Dam’s water levels declined significantly during the Western Cape droughts in 2011 and 2017. The presentation will provide examples of the long-term monitoring records and trends.

Abstract

The basis of a hydrogeological conceptual model is the comprehensive characterisation of the groundwater system. This ranges from discrete hydraulic feature analysis to local-scale testing to integrated regional-scale aquifer system conceptualisation. Interdisciplinary data integration is critical to each level of characterisation to gain a realistic, yet simplified representation of the hydrogeological system based on various data sources. Incorporation of geological datasets, including (but not limited to) structural and lithological mapping, geotechnical core logs and geophysical surveys, in conjunction with a tailored selection of hydraulic testing techniques, are often underutilised by hydrogeologists. Yet, the contribution of these alternative hydraulic datasets cannot be overstated.

A recent hydrogeological assessment and feasibility study forming part of the planned expansion project for a base-metal mine in the Northern Cape, South Africa, offers an ideal, practical example. The localised nature of the project area and the inherently complex geological setting required a more detailed conceptual model and hydrostratigraphic domaining approach. Highly heterogeneous stratigraphy and strong structural aquifer controls necessitated characterisation by reviewing, testing and analysing various datasets. Exploratory core datasets, hydraulic aquifer tests, geological and downhole geophysical datasets, and statistical Rock Quality Designation—hydraulic conductivity relationships were interpreted to produce meaningful, refined hydraulic process identifications. A comprehensive local groundwater framework, discretised into various hydrostratigraphic units and structural domains with specified hydraulic parameters, was incorporated to provide a novel, more robust conceptual understanding of the unique hydrogeological system.

Abstract

Various electrical potential difference-audio magnetotelluric (EPD-AMT) geophysical equipment is now available in the market for groundwater exploration, and the Groundwater Detector is one of them. Due to their low cost, deeper penetration, and real-time measurement, the technology has been widely received in many developing and underdeveloped countries. However, research to understand the application of the EPD-AMT surface geophysics approach in groundwater exploration is very limited. This research gap needs urgent attention to promote the technology’s meaningful and wider application. The lack of published case studies to demonstrate the capabilities of the EPD-AMT approach is a limiting factor to its application.

Research on different hydrogeological settings is paramount as part of the efforts to improve the practical understanding of the application of the EPD-AMT geophysical approach in groundwater exploration. This study shares field experience from applying the EPD-AMT Groundwater Detector geophysical technique to explore groundwater in dolomite, granite, and Karoo sandstone hardrock aquifers in Southern Africa.

Abstract

Groundwater is a vital freshwater source, and its role in meeting water demands will become pivotal under future climate change and population growth. However, groundwater supply to meet this demand is at risk as aquifers can be rapidly contaminated, and the cost of aquifer rehabilitation and/or sourcing alternative water supplies can be high. The development of groundwater protection schemes is required to ensure long-term protection of groundwater quality and sustainable groundwater supply. A groundwater protection scheme is a practical and proactive means to maintain groundwater quality and forms an additional methodology for groundwater resource management/protection. There are no legislative guidelines on establishing groundwater protection schemes in water-scarce South Africa, despite groundwater being used extensively. Three groundwater protection schemes were designed and implemented to protect abstraction from a fractured aquifer in an undeveloped natural mountain catchment and two primary aquifers within different urban settings. The approach incorporated protection zone delineation (comprising four zones), aquifer vulnerability mapping/ ranking using the DRASTIC method (with the primary and fractured aquifer systems having varying vulnerabilities), and identification of potentially contaminating activities (which also vary significantly between the urban areas overlying the two primary aquifers, and the generally undeveloped natural mountain catchment fractured aquifer is situated within). Additionally, a protection response was established to determine monitoring frequencies. Practical insights into the design and implementation of these three groundwater protection schemes can serve as a model for implementation in other African aquifer systems.

Abstract

Coal Ash Beneficiation is a government imperative for South Africa, and Eskom generates approximately 34 million tons of coal ash annually from their 14 pulverised coal fuel plants. It is estimated that there are approximately 6,000 abandoned coal mines in South Africa, of which 2,322 are classified as high risk, contributing to subsidence and the generation of acidic mine drainage. It is envisaged that coal ash could offer a support medium for the mines and neutralise the acidic mine water due to its alkaline nature. The Department of Fisheries, Forestry and the Environment has supported the initiative but has requested a means of modelling possible contamination due to placing the coal ash in these environments. To this end, laboratory trials were completed to generate the initial model and a controlled pilot site was established to validate the model’s accuracy. This trial evaluated stabilised and unstabilised coal ash as a means of acid water management. The laboratory trials showed that the ash could neutralise the pH of the mine water from approximately 2 to 7; this was sustained for the test period. In addition, sulphate and iron were significantly reduced in the treated water. The laboratory and site work results will be detailed in this presentation.

Abstract

The Atlantis Water Resource Management Scheme (AWRMS) has operated since the 1970s. It demonstrates cost-effective and wise water use and recycling through visionary town planning and Managed Aquifer Recharge (MAR), offering water security to Atlantis’s residential and industrial sectors. For the AWRMS to succeed, it required integrating its water supply, wastewater and stormwater systems. Each of these water systems is complex and requires a multidisciplinary management approach. Adding to the challenges of inter-departmental co-operation and communication within a municipal system is the complexity and vulnerability of the coastal, primary Atlantis Aquifer. A combination of operational difficulties, biofouling, vandalism and readily available surplus surface water (leading to scheme augmentation from surface water) were negative drivers to decrease the reliance on groundwater supply from the scheme’s two wellfields. In response to the 2015-2018 drought experienced in the Western Cape of South Africa, the City of Cape Town has improved assurance of supply from the scheme and successfully built resilience by upgrading knowledge and insight through improved investigative techniques, monitoring, modelling and adaptive management of the various water resources and associated infrastructure systems. An integrated and adaptive management approach is essential to ensure continued water security and resilience to the effects of on-going urban expansion, population growth and climate change. Resilience is assured by institutions, individuals and communities taking timely and appropriate decisions, while the long-term sustainability of the AWRMS depends on proper management of all actors coupled with a high level of scientific confidence.

Abstract

The SADC region has vast potential to alleviate water scarcity and promote growth through the responsible development of groundwater resources. To achieve this, it is crucial to understand the resource’s value, implement sustainable abstraction programs, protect its quality, optimize its usage for regional development, and implement innovative aquifer management programs, including artificial recharge. Greenchain Group is a water treatment company that recognizes the value of water and strategically deploys its expertise to maximize the potential of each drop. As membrane technology specialists and local manufacturers of this advanced technology, we understand how to design integrated solutions to safeguard water quality and accessibility. Our wide range of filtration technologies allows us to select the technology suited to the application and regional groundwater context and to produce high-quality water from various sources, including groundwater. Additionally, by removing contaminants/unwanted constituents from groundwater, we enhance the value of each drop of water for local potable consumption, eliminate the need for overwatering in agriculture, and allow for the creation of new agriculture/industries in regions with poor groundwater quality. This same technology can also treat wastewater and remove contaminants (e.g. chemical of emerging concern, PFAS) and thus is critical to water reuse applications and responsible Managed Aquifer Recharge. Greenchain Group’s treatment systems have been used in various industries, including agriculture, mining, energy, medical, food and beverage, and remote and mobile settings.

Abstract

Previous studies have shown that river-aquifer connectivity exists. However, an integrated approach that consists of multiple measuring methods to quantify and characterise such connectivity still needs improved scientific understanding due to the underlying principles and assumptions of such methods, mainly when such methods are applied in a semi-arid environment. Three techniques (hydrogeochemistry, stable water isotopes, and baseflow separations) were applied to quantify and characterize river-aquifer interactions. The study’s objective was to improve knowledge and understanding of the implications of the results from the three methods. Field measurement, laboratory assessment, and record review were used to collect primary and secondary data. Results showed that Na- HCO3 water type dominated the upper stream, discharging onto the surface and forming stream sources. Na-HCO3 water type was an outlier when the area’s geology and land use activities were assessed. The isotope results showed that the studied aquifer had 9% recently recharged water. Being the upstream, the freshwater in such a mountainous aquifer was expected. The baseflow index (BFI) results showed that the dependency of the total river flow to aquifer discharge contributed 7.24 % in the upper stream, 7.31% in the middle stream, and 7.32% in the lower stream. These findings provided empirical evidence that hydrochemistry, stable isotopes, and baseflow separation methods provide key insights into aquifer-stream connectivity. Such findings inform choosing appropriate and relevant measures for protecting, monitoring, and allocating water resources in the catchments.

Abstract

In the past decade, Southern Africa has experienced periods of extreme drought. This was especially true in the western Karoo in South Africa. Continuous drought and limited rainfall led to declining aquifer water levels that curtailed sustainable water supply for towns and livestock. The western Karoo is almost completely dependent on groundwater. Managed aquifer recharge (MAR) is being used to reduce the effects of droughts and mitigate climate change impacts. A good understanding of the geology and the behaviour of the aquifers is needed for implementing various MAR designs, including nature-based solutions, which are used to recharge aquifers with limited rainfall. This paper discusses 5 active MAR case studies in the Western Karoo. Here, site-specific MAR methods that use small rainfall events deliver reasonable results, whereas the implemented MAR options keep most aquifers functional. Observations at the MAR sites also showed improved water quality and less bacterial clogging. This improves the environment around the managed aquifer recharge sites. The MAR methods and designs discussed in this paper can be used on a larger scale for a town or a smaller scale for a farm. Maintenance costs are low, which makes these options cost-effective for less wealthy areas.

Abstract

To better understand the role of groundwater contribution to baseflow and EWR in groundwater protection and allocation, groundwater contribution must be quantified. Groundwater contribution to baseflow remains a challenge. Baseflow values have been widely used as groundwater contribution to surface water, which overestimates or underestimates the role of groundwater in the ecological ecosystem sustainability. To achieve the aim of the study, which was to estimate groundwater contribution to baseflow in a perennial river system at a catchment scale of the Upper Berg catchment, three objectives were taken into consideration: 1) To describe the hydrogeology of river morphology for groundwater-surface water interaction, 2) To estimate groundwater contribution to baseflow 3) To demonstrate the use of the background condition in setting resource quality objectives. Baseflow separation method using the Lynne & Hollick and Chapman algorithms, mass balance equation using EC as the tracer, field observation, and hydrochemical analysis methods were used to determine groundwater contribution to baseflow. Based on the hydrogeological cross-section presented, the fractures and faults of the peninsula geological formation dominating the study area predicted groundwater contribution to baseflow, which was confirmed by the calculations. The mass balance equation showed that 2,397 % of the 7.9 % baseflow index calculated at G1H076 and 19,093% of the 7.2% baseflow index calculated at G1H077 was groundwater. The background condition of the Upper Berg catchment was determined to be pristine with clean water.

Abstract

Darcy Velocity (Vd) is often estimated through a single-borehole Point Dilution Tracer Test (PDTT). Vd is used in the investigation of contaminant transport and distribution in aquifers. The tracer dilution rate in groundwater is controlled by horizontal groundwater flux. However, it can be affected by other artefacts, such as diffusion and density effects. Although there are studies on tracer tests, there has not been much done to gain an understanding of how these artefacts affect the correct Vd estimation. This study, therefore, aims to investigate and provide an understanding of the influence of artefacts on the PDTT through laboratory experiments conducted using a physical model representing a porous media. A total of 18 experiments were performed with different NaCl tracer concentrations under constant horizontal groundwater flow and no-flow conditions. The study results show that the density sinking effect affects an early period of tracer dilution, which can lead to overestimation of Vd; therefore, these stages should not be used to estimate Vd. The study, therefore, proposes a way in which PDTT data should be analysed to understand the effects of artefacts on Darcy velocity estimation.

Abstract

Given the challenging global water outlook due to climate change and urbanisation, there is a heightened necessity for greater water resilience at critical facilities to tackle water disasters or disasters that lead to water crises. In 2017, the Western Cape Province of South Africa experienced an extended drought with the risk of acute water shortages. The Western Cape Government (WCG) developed business continuity plans and implemented a programme to ensure water supply to certain critical service delivery facilities, utilising the strategy of developing localised groundwater supply systems. The case study research of the WCG program enabled the development of an evaluation framework that assessed this strategy’s effectiveness in improving water resilience levels at critical facilities. From the lessons learnt in the WCG programme, the research also crystallised the critical success factors in sustainably implementing this strategy. The research showed that this is an effective strategy for its purposes and provides both current and future disaster preparedness planners with an improved understanding of the levels of water resilience achievable through this strategy and the methodology to achieve it best.

Abstract

This study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment.

Abstract

West of the world-renowned conservation site, Kruger National Park, lies the larger extent of the Greater Kruger National Park within the Limpopo province. Boreholes have been drilled for decades to provide water to game lodges, large resorts, and watering holes for game viewing and livestock. The area contains both primary and secondary aquifers classified as having yields between 0.5 and 5.0 l/s, based on the geological setting, which consists of gneiss intruded by dolerite dyke swarms. A geohydrological assessment revealed that groundwater quality within the project area has an EC of 100 - 350 mS/m, linked to borehole proximity to surface water systems. The Makhutswi Gneiss and Doleritic Dyke swarms are the major controlling geology of the area, with higher-yielding boreholes close to dykes and major structural lineaments (faulted / weathered zones). A concern identified through geohydrological assessment observations is that boreholes frequently dry up after a few years, requiring deeper drilling/redrilling or drilling a new borehole. Aggressive calcium hardness in the water frequently damages equipment and increases maintenance costs. This project investigated the feasibility of increasing recharge to the aquifer with seasonal flooding/rainfall events by constructing artificially enhanced recharge locations overlaying doleritic dykes. This is expected to decrease the groundwater’s salinity and hardness, reducing operational costs. This pre-feasibility assessment has been completed, and the project has continued through a gradual implementation phase.

Abstract

The recent uncertainties in rainfall patterns have resulted in shortages in the availability of water resources, posing significant risk to the sustainability of all living organisms, livelihoods and economic prosperity. The fact that hidden groundwater resources in semi-arid regions present a challenge to understanding and managing the resources. Various groundwater studies have been undertaken; however, the quantification is generally over-simplified due to a limited understanding of the groundwater flow regime and consideration being mostly given to water supply. Thus, the data is often not comprehensive enough and generally limited in determining how much groundwater is available to supply rural areas. The Komati catchment area is dominated by coal mining in the upper reaches and irrigation and agriculture in the lower reaches, with human settlements competing for these water resources. Five significant dams in the Komati catchment are constructed to deal with the increasing water demand for commercial agriculture in the region. However, given uncertain weather patterns, the water mix approach is imperative. This study focused on understanding the groundwater potential, characterised the aquifer system, delineated the groundwater resource units, quantified baseflow and calculated the groundwater balance that can be used as a guide for the groundwater management protocol for the catchment area. The box model approach (surface-groundwater interaction) was used to characterize the groundwater regime and understand the spatial distribution of the aquifer types, water quality and significant aquifers of interest to protect this important resource.

Abstract

Salinization is one of the main threats to groundwater quality worldwide, affecting water security, crop productivity and biodiversity. The Horn of Africa, including eastern Ethiopia, northeast Kenya, Eritrea, Djibouti, and Somalia, has natural characteristics favouring high groundwater salinity. However, available salinity data are widely scattered, lacking a comprehensive overview of this hazard. To fill this gap, machine learning modelling was used to spatially predict patterns of high salinity with a dataset of 6300 groundwater quality measurements and various environmental predictors. Maps of groundwater salinity were produced for thresholds of 800, 1500 and 2500 μS/cm. The main drivers include precipitation, groundwater recharge, evaporation, ocean proximity, and fractured rocks. The combined overall model accuracy and area under the curve of multiple runs were both ~81%. The salinity maps highlight the uneven spatial distribution of salinity, with the affected areas mainly located in arid, flat lowlands.

These novel and high-resolution hazard maps (1 km2 resolution) further enable estimating the population potentially exposed to hazardous salinity levels. This analysis shows that about 11.5 million people (~7% of the total population) living in high-salinity areas, including 400,000 infants and half a million pregnant women, rely on groundwater for drinking. Somalia is the most affected country, with an estimated 5 million people potentially exposed. The created hazard maps are valuable decision-support tools for government agencies and water resource managers in helping direct salinity mitigation efforts

Abstract

Aquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow. In this study, we evaluated the impact of these factors by adapting and developing analytical solutions and numerical modelling, with recently established Urban ASR systems as a reference for a wide range of realistic field conditions. We validated the accuracy and usefulness of the analytical solutions for performance anticipation. Results showed that a simple, analytically derived formula describing dispersion losses solely based on the dispersion coefficient (α) and the hydraulic radius of the injected volume (Rh) provided a very good match for all conditions tested where α/Rh<0.2. An expansion of the formula to include the development of recovery efficiency with subsequent cycles (i) was also derived and in keeping with simulation results. Also, displacement losses were found to be significant at groundwater flow velocities that are typically considered negligible, particularly as displacement and dispersion losses disproportionally enforced each other. For specific conditions where the displacement losses are dominant, using a downgradient abstraction well, effectively resulting in an ASTR system, might be beneficial to increase recovery efficiencies despite increased construction costs and design uncertainty.

Abstract

Worldwide, more than 400 transboundary aquifers (TBAs) have been identified. Only a small number of these aquifers have been assessed in detail. Consequently, little is known about (potential) transboundary impacts. Changes in transboundary groundwater fluxes can indicate potential transboundary impacts as groundwater abstractions can affect such fluxes, indicating potential risks of transboundary contamination. To our knowledge, a quantitative assessment of transboundary aquifer fluxes (TBAFs) is not available because national groundwater models (if existing) often lack a good interaction with surrounding countries. In recent years, a high-resolution global groundwater model (GGM) has been developed as part of the PCR-GLOBWB family of models, having a 5 arcmin (~10*10km2 ) resolution. PCR-GLOBWB has previously been used to quantify environmental flows, assess global droughts, and assess climate impacts on global water resources. Recently the 5 arcmin GGM has been updated to 30 arcsec (~1*1km2 ) using high performance computing (referred to as GLOBGM). We present an application of GLOBGM to assess TBAFs of major TBAs. Results show that even though hydrogeological data are often scarce, a rough order of magnitude of the TBAFs can be assessed. TBA fluxes are compared with groundwater recharge. Although GLOBGM cannot replace assessments of TBAs based on local hydrogeological information and information on groundwater use, the analysis provides valuable information. GLOBGM can be used to quantify the relevance of TBAFs in relation to other fluxes such as from rivers or (future) abstractions. TBAF analyses can also assist in prioritising scarce funds and capacity between TBAs

Abstract

In the Federal Capital Territory of Abuja (Abuja FCT, Nigeria), a population growth of about 400% between 2000 and 2020 has been reported. This trend, coupled with the persisting urban sprawling, is likely to result in severe groundwater quality depletion and contamination, thus undermining one of the area’s main freshwater supplies for drinking purposes. In fact, groundwater in Nigeria and Abuja FCT provides over 70% of the drinking purposes. Results of a groundwater vulnerability assessment that compared land use data from 2000 and 2020 showed that the region had been affected by a dramatic change with an increase in urbanized (+5%) and agricultural (+27%) areas that caused nitrate concentrations to exceed the statutory limit for drinking purposes in more than 30% of the monitored wells in 2021 and 40% in 2022. Although fertilizers are generally considered the main source of nitrate contamination, results suggest a possible mixed (urban and agricultural) pollution origin and a legacy of previous nitrogen pollution sources. The comparison between the DRASTIC-LU map and nitrate concentrations shows that the highest values are found in urban/peri-urban areas, in both shallow and deep wells. This investigation is the first step of a comprehensive nitrate pollution assessment in the region, which will provide decision-makers with adequate information for urban planning given the expected population growth in the area

Abstract

Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 mill. ha) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5 degrees spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 mill. ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semiarid Sahel and eastern African regions which could support poverty alleviation if developed sustainably and equitably. The map is a first assessment that needs to be complimented with assessment of other factors, e.g. hydrogeological conditions, groundwater accessibility, soils, and socio-economic factors as well as more local assessments.

Abstract

Crystalline basement underlies much of Africa, and the groundwater within the shallow, weathered layer provides reliable drinking water for many people. This resource is key in adapting to changing climate, particularly in providing reliable water for drinking and smallscale irrigation. However, this requires higher yields from boreholes than currently abstracted. Renewed research is required to investigate sustainable yields from this type of aquifer and how it varies spatially. Recent work on crystalline basement rocks in Africa has shown that there are a number of important geological and geomorphological controls on shallow aquifer parameters; variability of geological properties and the impact of the landscape history is likely to have a strong control. Typically, the basement has experienced high metamorphic grades, which reduces intergranular porosity. Consequently, the aquifer relies on the presence of fault/ fracture zones; and the regolith’s depth and nature, which can have significantly higher porosity and permeability than the underlying bedrock. The interaction and variability of these key factors and climatic and landuse variables are likely to impact shallow aquifer productivity strongly. Here, we report on an ongoing study by UK and African scientists to understand how to represent the variability of geological, regolith and landscape factors across African crystalline basements. In tandem, a data-driven modelling approach is being used to examine these controls’ influence on groundwater yields. Continental-scale mapping of basement groundwater yield is planned, supporting those planning further aquifer development, including the growing use of solar-powered pumps.

Abstract

Kinsevere Mine is an open pit copper mine located within the Central African Copper Belt, experiencing common water challenges as mining occurs below the natural water table. The site’s conceptual model is developed and updated as one of the tools to manage and overcome the water challenges at and around the mining operations. The natural groundwater level mimics topography but is also affected by the operations. The pits act as sinks. The water table is raised below the waste dumps due to recharge in these areas, and the general groundwater flow direction is to the east. The site is drained by the Kifumashi River, located to the north of the site. Water levels from dewatering boreholes and natural surface water bodies define the site’s piezometric surface. The geological model is adopted to define the aquifers and groundwater controls. The Cherty Dolomites, a highly fractured Laminated Magnesite Unit, contribute the highest inflows into the mine workings. The Central Pit Shear Zone acts as a conduit and compartment for groundwater between Mashi and Central Pits. Hydraulic tests have been conducted over the years, and these data are used to estimate possible aquifer property values. The high-yielding aquifer on the west is dewatered using vertical wells, and the low-yielding breccia on the east is depressurized using horizontal drain holes. The site’s water management strategy is reviewed and improved through refinement of the conceptual model.

Abstract

Across Africa, given the pressing challenges of climate change and widespread water, food and livelihood insecurity and poverty, there is an ever-increasing expanding role for groundwater in resilience building, especially in borderland communities. This situation is being investigated in several projects and geographies. This paper’s groundwater management analysis was based on literature reviews, key informant interviews (KIIs), and focus group discussions (FGDs) in selected case study areas throughout sub-Saharan Africa. The KIIs included representatives of water management institutions, community leaders, international development partners, the private sector and non-governmental organisations (NGOs) involved in the use or management of groundwater. The FGDs occurred in borderland communities in Ethiopia, Kenya, and Somalia (with these three countries sharing borders) and Mozambique, South Africa and Zimbabwe (with these three also sharing borders). The findings show that informal institutions such as clan, tribal or ethnic affiliations dictate access to natural resources such as groundwater in borderlands. These same Institutions also play a significant role in conflict resolution in the borderland areas. In addition, informal institutions play an essential role in groundwater management and should also be recognised – in engagements and formal water policies and legislation. Formal organisations, institutions and government structures should strengthen their focus on ensuring that discussions and decisions include informal role players. Further developing and enforcing conventions, land-use plans, and bylaws governing access to and use of groundwater should ensure engagement and co-creation of solutions towards effective water resource management.

Abstract

Groundwater is a hidden resource, so as part of making it more visible, geophysical methods can be very useful in inferring the delineation of aquifers and/or more productive zones to target in fractured rock environments. The most commonly used techniques to assist groundwater studies or exploration are still resistivity profiles or sections known as ERT or electrical resistivity tomography and vertical electrical soundings or VES. One of the limiting factors with this technique is the scale of what surveys can be conducted, resulting in, at best, some kilometers per day. The Hydrogeophysics group of Aarhus University have developed the towed transient electromagnetic (tTEM) system as a cost-efficient tool for characterizing regional hydrological systems to depths of up to 70 m as an alternative to these more traditional methods - which is highly productive in that collection of 40- to-80-line kilometers of data per day is feasible. The system is based on the transient electromagnetic (TEM) method, which involves using a transmitter and receiver coil to measure the electrical resistivity of the subsurface. The hydrological value in electrical resistivity images stems from the ability to delineate different hydrogeological units based on their contrasting electrical properties. Consequently, 3D electrical resistivity images can infer the subsurface hydrogeology and enhance the success of installing productive boreholes. This work presents case studies from several African countries (e.g., South Africa, Zimbabwe, Ethiopia, Senegal, and Togo). It demonstrates how the tTEM method can identify reliable drinking water sources in these countries.

Abstract

The hydrological cycle consists of several components, with two of the major processes being that of surface water flows and groundwater flows. It has been proven before that these two components interact with each other and are often critical to the survival of the associated users and ecosystems, especially in non-perennial river systems. Non-perennial river systems have a limited number of studies, especially on its link to groundwater and the management of the system. Surface water and groundwater individually contribute to the quality, quantity and distribution of water available and the effect on down gradient users. Understanding these processes would help greatly in managing the non-perennial river/groundwater catchment systems along with its respective ecosystem. The aim is, therefore, to provide an understanding of the groundwater and surface water interactions in the research catchments of Agulhas, Touws and Tankwa-Karoo, and to understand the influence of management decisions related to groundwater use. To achieve this aim, conceptual models will be formulated for the different sites using borehole, geophysics, hydraulic and geochemical data collected in the research catchments. Prediction of the effects of groundwater use on the river systems, and river modifications on groundwater levels, will be done using numerical models to simulate the flow processes and the interactions. With the often strong reliability on groundwater in semi-arid and arid regions to support ecosystems and surface water pools, it is expected that the results will indicate a decrease in river flows (and existence of pools) with an increase in shallow aquifer groundwater abstraction. However, the regional flow of groundwater and surrounding faults and springs may have an influence large enough to counter the expected result.

Abstract

In recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation.

Abstract

Surface water resources are under threat of depletion and quality deterioration due to various factors such as climate change, urbanization, and population expansion. Managed aquifer recharge (MAR) is a technique that has been successfully implemented over the last 4 decades to sustain the balance between water demand and availability. The unsaturated zone, where source water is introduced during infiltration, plays a major role in the reduction of contaminants present in water before it naturally percolates and reaches the aquifer. This research aims to evaluate the removal efficiency of contaminants by the unsaturated zone. Three objectives to be accomplished are; to determine and classify the chemical composition of the source water. Secondly, to determine the hydraulic properties of the soil in the area of interest. Lastly to evaluate the contaminants removal efficiency, by tracing the quality of water at the point of recharge and discharge. The Atlantis water resource management scheme in the Western Cape will be used as a case study, in order to assess the relationship between the unsaturated zone and the reduction of contaminants.

The current study argues that during the artificial recharge of aquifers, contaminants present in the source water filter through the unsaturated zone, where natural processes, as well as resident microbes, reduce their concentrations to acceptable levels. Assessing the ability of the unsaturated zone to reduce contaminants, will allow for the early warnings of contamination potential and the execution of informed prevention strategies that can be used in decision making of the management and protection of water resources. Additionally, the advanced understanding of the role that the unsaturated zone plays in eliminating contaminants can be used to account for satisfactory groundwater quality in areas where groundwater is not constantly monitored and artificial remedies are not applied.

Abstract

The City of Cape Town (CoCT) metropolitan municipality seeks to identify and develop alternative water resources for the augmentation of surface water to ensure more robust and sustainable water supply to the CoCT and its inhabitants. A 3-D finite-element numerical model of the Atlantis Aquifer was developed using the commercial code FEFlow 7.1 to support the assessment of the impact of groundwater abstraction from the aquifer which has been identified as one of the target zones to develop sustainable alternative water resources as part of the CoCT water reconciliation strategy. The numerical model acts as a decision support tool to assist in planning and management of the rehabilitation and potential expansion of the groundwater abstraction and managed aquifer recharge scheme. The numerical model is to be applied in determining the impact of additional abstraction as well as assess the maximum sustainable yield from the wellfields without negatively impacting on surface water sources and other groundwater dependent users. The model improves upon previous modelling work and represents the latest and most comprehensive knowledge in terms of three-dimensional aquifer geometry, location and rates of anthropogenic groundwater users, spatial distribution of recharge, hydraulic parameters and location of aquifer boundary conditions. Model parameters have been successfully calibrated under steady-state conditions to provide a realistic representation of long-term groundwater levels across the system (R2=98%). Abstraction scenarios and their impact on groundwater levels were assessed using the calibrated numerical model. Scenarios were simulated of three phases of abstraction (approximately 15, 25 and 40 Ml/d) to determine drawdown around the wellfields, the impact on spring discharge, and the possibility of saline intrusion. Model results show drawdown to be mostly confined to the associated wellfields, with minor drawdown experienced in the vicinity of Silwerstroom. Simulated hydraulic heads indicate that seawater intrusion is unlikely to occur under all scenarios.

Abstract

Aboriginal and Torres Strait Islander people have inhabited the lands now known as Australia for over 65,000 years. Their communities are intricately connected to the land and waters through culture and tradition. However, there are few examples of integrated water resource management that serve Aboriginal and Torres Strait Islander communities or cultural interests. This is particularly the case for groundwater. In Australia, Indigenous connections to groundwater have historically been overlooked or, in some cases, assumed not to exist. On the contrary, many Aboriginal and Torres Strait Islander cultures have longstanding physical and spiritual connections to a range of artesian and subartesian groundwater resources. These cultures also house accurate records of groundwater systems.

Despite this, groundwater management in Australia remains dominated by Western scientific perspectives, and the groundwater sector poorly integrates Indigenous stakeholder concerns or knowledge into groundwater management and planning. IAH Australia has prepared and signed an Indigenous Groundwater Declaration intending to raise awareness among the groundwater community of the value of Indigenous perspectives and knowledge of groundwater systems. This Declaration can be viewed and signed at http://declaration.iah.org.au. This presentation provides examples of effective partnerships between Indigenous Communities and Government or Academic groundwater professionals. While progress has been made, challenges must be overcome to integrate Indigenous knowledge and connections into groundwater resource management.

Abstract

Managed Aquifer Recharge (MAR) provides an integrated water governance solution that improves water security for communities and farmers by storing water in aquifers and managing groundwater extractions to ensure water supplies are available during droughts. Quantitative analysis of levelised costs and benefit-cost ratios (BCRs) of 21 MAR schemes from 15 countries and qualitative assessment of additional social and environmental benefits demonstrates the benefits of MAR compared to water supply alternatives. Cost-benefit analysis provides a systematic method for comparing alternative water infrastructure options. Levelised cost is a widely accepted method of comparing MAR with alternative water infrastructure solutions when market valuations of water are unavailable.

The benefits of MAR can be estimated by the cost of the cheapest alternative source of supply or the production value using water recovered from aquifer storage. MAR schemes recharging aquifers with natural water using infiltration basins or riverbank filtration are relatively cheap with high BCRs. Schemes using recycled water and/or requiring wells with substantial drilling infrastructure and or water treatment are more expensive while offering positive BCRs. Most MAR schemes have positive or neutral effects on aquifer conditions, water levels, water quality, and environmental flows. Energy requirements are competitive with alternative sources of supply. This analysis demonstrates strong returns to investment in the reported MAR schemes. MAR provides valuable social and environmental benefits and contributes to sustaining groundwater resources where extraction is managed.

Abstract

Water balance partitioning within dryland intermittent and ephemeral streams controls water availability to riparian ecosystems, the magnitude of peak storm discharge and groundwater replenishment. Poorly understood is how superficial geology can play a role in governing the spatiotemporal complexity in flow processes. We combine a new and unusually rich set of integrated surface water and groundwater observations from a catchment in semi-arid Australia with targeted geophysical characterisation of the subsurface to elucidate how configurations of superficial geology surrounding the stream control the variability in streamflow and groundwater responses. We show how periods of stable stream stage consistently follow episodic streamflow peaks before subsequent rapid recession and channel drying. The duration of the stable phases increases in duration downstream to a maximum of 44±3 days before reducing abruptly further downstream. The remarkable consistency in the flow duration of the stable flow periods, regardless of the size of the preceding streamflow peak, suggests a geological control. By integrating the surface water, groundwater and geological investigations, we developed a conceptual model that proposes two primary controls on this behaviour which influence the partitioning of runoff: (1) variations in the permeability contrast between recent channel alluvium and surrounding deposits, (2) the longitudinal variations in the volume of the recent channel alluvial storage. We hypothesise optimal combinations of these controls can create a ‘Goldilocks zone’ that maximises riparian water availability and potential for groundwater recharge in certain landscape settings and that these controls likely exist as a continuum in many dryland catchments globally.

Abstract

Groundwater governance and risk management in the Murray-Darling Basin in Australia (MDB) are being challenged by the increasing demand for water and the growing scarcity and variability of water supply owing to climate change. Over the past 20 years, consideration of risk related to groundwater in the MDB has evolved from concerns about the impact of groundwater extraction on surface water resources to an integrated assessment of risks to connected water resources and ecosystems. The Basin Plan includes a comprehensive framework for assessing risks to Basin water resources and ecosystems, but further scientific and policy developments are required to implement the plan. Consistent definition and improved assessment of groundwater-surface water connectivity are required, together with longer planning timeframes. Multi-year planning rules and policies must be developed to exploit opportunities for integrated management of groundwater and surface water resources and storage to manage droughts and floods. Risks to groundwater quality and groundwater-dependent ecosystems must be adequately assessed and monitored to avoid adverse impacts on communities and long-term loss of ecosystem services. Further improvements can be made in assessing cumulative risks from coal seam gas and coal mining. Additional research can be targeted towards knowledge gaps and uncertainties that pose the greatest risk to connected groundwater and surface water resources and ecosystem viability. Most importantly, further training and capacity building in water management agencies is critical to enable effective and transparent monitoring and management of Basin water resources.

Abstract

Technological advances in recent years provide a unique opportunity to adopt new instruments for groundwater monitoring to reduce operating costs, obtain higher measuring accuracy and reliability, and accomplish comprehensive real-time monitoring. Microelectromechanical system (MEMS) technology enables small and low-cost energy-saving microsensors and integration with IOT for real-time monitoring. This presentation will discuss the findings of the performance of a newly developed instrument based on a MEMS piezoresistive pressure sensor. We demonstrate a path forward for the expansion of this research. The sensor is designed to be applicable to both open and closed systems for measuring groundwater level and pore water pressure. Tests show that MEMs (0-689 kPa range) can obtain full-scale accuracy between 0.2-0.3% in groundwater level prediction. However, the measurement result mainly depends on the appropriateness of the calibration method. Regarding pore pressure measurement under sealed conditions by gravel sand and cement-bentonite grout, a full-scale accuracy between 0.3% and 0.725% is accessible, depending on the backfill material. However, it was evident that backfill materials have considerable effects on the response time and accuracy of measurement, in which a stiff and less permeable grout can increase inaccuracy and time lag in measurement. Overall, the initial results have shown a promising future for this technology in groundwater monitoring. However, more tests and analyses are still required to improve sensor design, energy consumption for IOT applications, wireless module, installation system and its specifications such as accuracy, conformance, precision, and stability.