Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognized that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (e.g. from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely un-assessed in South Africa, with no regulatory guidance currently available. In the late 1990's and early 2000's focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI could be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria and guidance has had a partially incomplete understanding of hydrocarbon vapour fate and transport processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative, leading to many unnecessary PVI investigations being conducted to the disruption of occupants of the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognizing the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also supports the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

Globally, a growing concern have been that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. While certain heavy metals are essential for plant growth as micronutrients, it may become toxic at higher concentrations. Additionally, as the toxic metals load of the soil increases, the risk of non-localized pollution due to the metals leaching into groundwater increases. The total soil metal content alone is not a good measure of risk, and thus not a very useful tool to determine potential risks to soil and water contamination. The tendency of a contaminant to seep into the groundwater is determined by its solubility and by the ratio between the concentration of the contaminant sorbed by the soil and the concentration remaining in solution. This ratio is commonly known as the soil partitioning or distribution coefficient (Kd). A higher Kd value indicate stronger attraction to the soil solids and lower susceptibility to leaching. Studies indicate that the Kd for a given constituent may vary widely depending on the nature of the soil in which the constituent occurs. The Kd of a soil represents the net effect of several soil sorption processes acting upon the contaminant under a certain set of conditions. Soil properties such as the pH, clay content, organic carbon content and the amount of Mn and Fe oxides, have an immense influence on the Kd value of a soil. Kds for Cu, Pb and V for various typical South African soil horizons were calculated from sorption graphs. In most cases there were contrasting Kd values especially when the cations, Cu and Pb, had high contamination levels, the value for V was low. There is large variation between the Kds stipulated in the Framework for the Management of Contaminated land (as drafted by the Department of Environmental Affairs) and the values obtained experimentally in this study. The results further indicate that a single Kd for an element/metal cannot be used for all soil types/horizons due to the effect of soil properties on the Kd. The results for Cu and Pb indicated that the Kds can range in the order of 10 to 10 000 L/kg for Cu and 10 to 100 000 L/kg for Pb. The variation in V Kd was not as extensive ranging from approximately 10 to 1 000 L/kg. {List only- not presented}

Abstract

Precision agriculture continuously seeks improved methods to enhance productivity whether it is for greater crop yields or economic viability regarding labour inputs and satisfying the demand in a shorter time span. Soil moisture is one important factor that drives the agricultural industry and is therefore of utmost importance to manage it correctly. A shortage of water may result in reductions in yield, while excess irrigation water is a waste of water resources and can also have a negative impact on plant growth. Knowledge of the spatial distribution of soil moisture is important for determining soil moisture storage and soil hydraulic transport properties. Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Electromagnetic induction, Frequency Domain Reflectometry, Neutron Scattering and conventional soil sampling have been utilised to determine the spatial variability of soil moisture within a field. Emphasis has been placed on practicality and accuracy of all the methods. Electromagnetics have proven itself to be the primary method to determine soil moisture within the field by comparing the results of the volumetric soil water content present in the field together with a combination of various soil properties such as clay and silt content, sand fraction, concretions, density and soil depth that contribute towards the accumulation of soil water. Electromagnetic induction has the highest resolution of data collected for a specific time period of all considered methods making it economically the best option for soil moisture management within a variable rate irrigation system. Electromagnetic induction has proven to be successful in delineating a field into management zones consisting of different classes based on observed conductivity values. Higher conductive zones are considered with small water demand. Lower conductive zones are considered with a greater water demand through a variable rate irrigation system. These water management zone maps could be informative for modelling, experimental design, sensor placement and targeted zone management strategies in soil science, hydrogeology, hydrology, and agricultural applications.

Abstract

Big data analytics (BDA) is a modern and innovative platform of applications that include advanced analytical techniques such as data mining, statistical analysis, artificial intelligence, machine learning, and natural language processing. Regional data are generated through groundwater monitoring, remote sensing applications or global circulation models (GCM), however this is often too course for a local understanding. Groundwater managers rely on locally relevant information for effective operational decision making, however this is often missing. A Transboundary Aquifer (TBA) Analytic Framework was developed to match, integrate and model local hydrogeological data with regional earth-observation data using BDA. Drawing on the literature on BDA, a reference architecture for the TBA analytical framework was identified for application to various groundwater management scenarios in the Ramotswa Dolomitic Aquifer (Botswana - South Africa) and Shire Valley Alluvial Aquifer (Malawi - Mozambique). The TBA analytical framework allows for local clouds to store the local and regional structured and unstructured datasets and interconnecting these local clouds through a federated cloud infrastructure. In this regard, tools that are incorporated in the TBA analytical framework include data ingestion operators, data transformation operators, and feature extractors. Various machine learning algorithms and statistical techniques are incorporated in the TBA analytical framework to downscale the regional datasets. The downscaling involves selection of potential predictors and predictants variables based on data needs to address local groundwater management scenarios such as regulating groundwater abstraction to prevent groundwater depletion. Using the downscaled data the TBA analytical framework can be utilised to uncover patterns and statistical relationships in the datasets in order to model local groundwater processes such as cone of depression, groundwater levels forecasting, well protection zoning, amongst others.

Abstract

Data acquisition and Management (DAM) is a group of activities relating to the planning, development, implementation and administration of systems for the acquisition, storage, security, retrieval, dissemination, archiving and disposal of data. Data is the life blood of an organization and the Department of Water and Sanitation (DWS) is mandated by the National Water Act (No 36 of 1998) as well as the Water Services Act (No 108 of 1997), to provide useful water related information to decision makers in a timely and efficient manner. In 2009 the DWS National Water Monitoring Committee (NWMC) established the DAM as its subcommittee. The purpose was to ensure coordination and collaboration in the acquisition and management of water related data in support of water monitoring programs. The DAM subcommittee has relatively been inactive over the years and this has led to many unresolved data issues. The data extracted from the DWS Data Acquisition and Management Systems (DAMS) is usually not stored in the same formats. As a result, most of the data is fragmented, disintegrated and not easily accessible, making it inefficient for water managers to use the data to make water related decisions. The lack of standardization of data collection, storage, archiving and dissemination methods as well as insufficient collaboration with external institutions in terms of data sharing, negatively affects the management water resources. Therefore, there is an urgent need to establish and implement a DAM Strategy for the DWS and water sector, in order to maintain and improve data quality, accuracy, availability, accessibility and security. The proposed DAM Strategy is composed of the six main implementation phases, viz. (1) Identification of stakeholders and role players as well as their roles and responsibilities in the DWS DAM. (2) Definition of the role of DAM in the data and information management value chain for the DWS. (3) Development of a strategy for communication of data needs and issues. (4) Development of a DAM life Cycle (DAMLC). (5) Review of existing DAMS in the DWS. (6) Review of current data quality standards. The proposed DAM Strategy is currently being implemented on the DWS Groundwater DAM. The purpose of this paper is to share the interesting results obtained thus far, and to seek feedback from the water sector community.

Abstract

The uncertainties associated with both the sampling process and laboratory analysis can contribute to the variability of the results. In most cases, it does appear that if the water samples have been analysed by an accredited laboratory, the results are acceptable. While the accreditation of analytical laboratory and therefore its credibility is very important to uphold quality and integrity, the same should be said about the sampling process. The quality and credibility of a sampling process is typically left to the responsibility of the appointed groundwater practitioner without any criteria to evaluate the quality and integrity of the sampling process. Perhaps the quality and integrity of the sampling process is evaluated based on trust or experience of the practitioner. However without any form of scientific criteria to evaluate the quality and integrity of the sampling process, it is difficult for the sampling process to be scrutinized. The quality and integrity of both the sampling process and laboratory analysis must be scientifically evaluated based on the uncertainty of measurements in line with the monitoring goals/requirements. This presentation discusses the aspects of evaluation of measurement uncertainties associated with groundwater sampling as an important component of quality assessment of groundwater sampling processes. The potential implications of the uncertainties on the final results and their use in decision making is also discussed. The credibility of the decisions made also depends on the knowledge about the uncertainties of the final results

Abstract

Approximately 982 km3 /annum of the world’s groundwater reserve is abstracted, providing almost half of all drinking water worldwide. Globally, 70% is used for agricultural purposes while 38% for irrigation.

Most water resources of South Africa are threatened by contamination caused by industrial, agricultural, and commercial activities, and many parts of the country face ongoing drought with an urgent need to find alternative freshwater sources, such as groundwater. Groundwater constitutes approximately 15% of the total volume consumed, hence it is an important resource that supplements insufficient surface water supplies across South Africa.

Very little attention has been afforded to understanding the anthropogenically altered vadose zone as a potential source or buffer to groundwater contamination. This is evident from few research studies that has applied multiple isotopic tracers to characterise this zone. Most subsurface systems in South Africa are characterised by fractures, whereby flow and transport are concentrated along preferential flow paths.

This study aims to evaluate the performance of different tracer classes (environmental and artificial) with one another, and create a better understanding of the hydraulic properties, mean residence time and transport mechanisms of these tracers. The influence of unsaturated zone thickness on recharge mechanisms will also be evaluated.

Site visits will be conducted for the proposed study areas, and the neighbouring sources of contamination will be assessed. The matric potential and unsaturated hydraulic conductivities will be measured using various techniques. Water samples will be collected and analysed for the various tracers from the vadose zone using gravity lysimeters including suction cups. Several tracers will also be injected into boreholes where samples will be collected to calculate tracer residence times (BTC’s) and further constrain the hydraulic properties of the vadose zone. All samples will be analysed, interpreted, and simulated using the numerical finite-element modelling code SPRING, developed by delta h. The software derives quantitative results for groundwater flow and transport problems in the saturated and unsaturated zones of an aquifer.

The research is expected to provide more insight into the selection and use of environmental and artificial tracers as markers for detecting, understanding the transport processes and pathways of contaminants in typical altered South African subsurface environments. The impact derived improved characterisation of the pathways, transport, and migration processes of contaminants, leading to groundwater protection strategies and appropriate conceptual and numerical models. The output from this study will determine the vertical and horizontal flux for both saturated and unsaturated conditions.

Abstract

The groundwater quality in semi-arid aquifers can be deteriorated very rabidly due to many factors. The most important factor affecting the quality of groundwater quality in Gaza Strip aquifer is the excess pumping that resulting from the high population density in the area. The goal of this study to investigate the future potential deterioration in groundwater salinity using scenario analysis modeling by artificial neural networks (ANN). The ANN model is utilized to predict the groundwater salinity based on three future scenarios of pumping quantities and rates from the Gaza strip aquifer. The results shows that in case the pumping rate remains as the present conditions, chloride concentration will increase rapidly in most areas of the Gaza Strip and the availability of fresh water will decrease in disquieting rates by year 2030. Results proved that groundwater salinity will be improved solely if the pumping rate is reduced by half and it also will be improved considerably if the pumping rate is completely stopped. Based on the results of this study, an urgent calling for developing other drinking water resources to secure the water demand is the most effective solution to decrease the groundwater salinity.

Abstract

The complexity of real world systems inspire scientists to continually advance methods used to represent these systems as knowledge and technology advances. This fundamental principle has been applied to groundwater transport, a real world problem where the current understanding often cannot describe what is observed in nature. There are two main approaches to improve the simulation of groundwater transport in heterogeneous systems, namely 1) improve the physical characterisation of the heterogeneous system, or 2) improve the formulation of the governing equations used to simulate the system. The latter approach has been pursued by incorporating fractal and fractional derivatives into the governing equation formulation, as well as combining fractional and fractal derivatives. A fractal advection-dispersion equation, with numerical integration and approximation methods for solution, is explored to simulate anomalous transport in fractured aquifer systems. The fractal advection-dispersion equation has been proven to simulate superdiffusion and subdiffusion by varying the fractal dimension, without explicit characterisation of fractures or preferential pathways. A fractional-fractal advection-dispersion equation has also been developed to provide an efficient non-local modelling tool. The fractional-fractal model provides a flexible tool to model anomalous diffusion, where the fractional order controls the breakthrough curve peak, and the fractal dimension controls the position of the peak and tailing effect. These two controls potentially provide the tools to improve the representation of anomalous breakthrough curves that cannot be described by the classical-equation model. In conclusion, the use of fractional calculus and fractal geometry to achieve the collective mission of resolving the difference between modelled and observed is explored for the better understanding and management of fractured systems.

Abstract

Geochemical investigations for a planned coal mine indicated that the coal discard material that would be generated through coal processing would have a significant potential to generate acid rock drainage. A power station is planned to be developed in close proximity to the coal mine, and the potential for co-disposal of coal discard with fly-ash material required examination. Fly-ash is typically highly alkaline and has the potential to neutralise the acidic coal discard material. In order to investigate whether this was a viable option, the geochemical interaction between the coal discard and fly-ash was investigated. Geochemical data, including acid-base accounting, total chemical compositions, leach test data and kinetic test data, were available for the coal discard material and the fly-ash. Using these data as inputs, a geochemical model was developed using Phreeqci to predict the pH of leachate generated by mixing different ratios of coal discard and fly-ash. The ratio of coal discard to fly-ash was established that would result in a leachate of neutral pH. Using this prediction, a kinetic humidity cell test was run by a commercial laboratory for a total of 52 weeks using the optimal modelled ratio of discard and fly-ash. Although leachate pH from the kinetic test initially reflected a greater contribution from fly-ash, the pH gradually decreased to the near-neutral range within the first 20 weeks, and then remained near-neutral for the remainder of the 52-week test. During this period, sulphate and metal concentrations also decreased to concentrations below those generated by either the fly-ash or coal discard individually. The addition of fly-ash to the coal discard material provided sufficient neutralising capacity to maintain the near-neutral pH of the co-disposal mixture until the readily available sulphide minerals were oxidized, and the oxidation rates decreased. At the end of the test, sufficient neutralising potential remained in the humidity cell to neutralise any remaining sulphide material. The results of this investigation suggested that, under optimal conditions, co-disposal of fly-ash with coal discard is a viable option that can result in reduced environmental impacts compared to what would be experienced if the two waste materials were disposed of separately.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

Implementation of a mining project in South Africa involved dewatering of a fractured rock aquifer at considerable depth below ground level. Groundwater quality within this aquifer is not suitable for domestic use due to high levels of salinity. Numerous geological investigations in the area indicate that the target aquifer is confined, with a different piezometric head to the shallower aquifers. However, regulators and other interested and affected parties expressed concern regarding the potential mixing of more saline groundwater from the deeper aquifer to be dewatered with groundwater from shallower aquifers, which are extensively used for farming and domestic purposes.
A large database of groundwater quality monitoring data collected over 16 years was available to investigate the degree of mixing between the deeper more saline and shallower freshwater aquifers. The groundwater chemistry of selected boreholes with known geological profile, depth and construction was used to develop groundwater fingerprinting criteria for each of the aquifers in the area. These fingerprinting criteria were then applied to private and exploration boreholes in the area in order to identify the main aquifer from which groundwater was being sourced. Once the boreholes were classified in terms of groundwater origin, an attempt was made to identify indicators of mixing with deeper, more saline groundwater from the aquifer being dewatered.
Groundwater fingerprinting allowed identification of impacts related to the mining operations. The data showed that there was no upward mixing of water related to dewatering operations, but rather that surface spillages and disposal schemes may have resulted in minor changes in shallow groundwater quality. {List only- not presented}

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increasing of T with scale is due to the use of the "not applicable" random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, which uses deterministic methods, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

By using intuitive inspection of geological, fracture and connectivity data as well as real pumping test data, this paper shows that up-scaling must be performed with an exponential decaying function, where T always decreases with scale
.
Two types of heterogeneities exists namely a.) horizontal and b.) vertical. Connectivity between fractures is extremely important in both cases, but it is only in semi-confined and watertable aquifers that the vertical heterogeneities are really important (typical case of fracture dewatering)
{List only- not presented}

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites detect minute temporal variation in the earth's gravitational field at an extraordinary accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores (snow, groundwater, surface water and soil moisture) due to increases or decreases in storage. The GRACE monthly TWS data are being used to estimate changes in groundwater storage in the Vaal River Basin for a period (2002 to 2014). The Vaal River Basin has been selected, because it is one of the most water stressed catchments in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands, it is critical to monitor and calculate changes in groundwater storages as an important aspect of water management, where such a resource is a key to economic development and social development. Previous studies in the Vaal River Basin were mostly localised focusing mainly on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, but many of these models do not take into account the groundwater component. Thus, there is a significant gap in the understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks are often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is a good approach to estimate changes in hydrological storages as it covers large areas and generates real time data. It does not require information on soil moisture, which is often difficult to measure. The accuracy of calculating change in groundwater storage lies in the processing of GRACE data and smoothing radii. For this study, smoothing radii of 1500, 900, 500, 300, 150 and 1 km are used. Currently the associated error with different smoothing radii is unknown. The preliminary results indicate that the study area experienced a loss in TWS of -31.58 mm equivalent water height over a period of 144 months in TWS at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamics, which will improve water management practices.

Abstract

Water monitoring is a key aspect in the mining industry, in terms of gathering baseline data during the pre-construction stage, identifying potential areas of concern and mitigating source pollutants during the operational stage. A proper water monitoring program assists in the monitoring of plume development and water level rebound during the closure phase. The data made available through consistent long term monitoring should not be underestimated. Monitoring the effect that coal mine operations have on the water quality and quantity of surface and groundwater resources is a complex and multidisciplinary task. Numerous methodologies exist for monitoring of this kind. This paper will supply an overview of the water- rock chemistry associated with coal mine environments and the key indicator elements that should be focused on for water monitoring as well a review of the Best Practice Guidelines requirements in terms of water monitoring. Two case studies of coal mines in KwaZulu Natal will be reviewed, the key challenges outlined and mitigation measures implemented. The impact of requirements such as those set out by the Department of Water and Sanitation in terms of strict water quality limits for water containment and waste facilities as specified by Water Use Licences has also created unrealistic non-compliance conditions. The initial approach to creating a water monitoring programme should involve first identifying gaps in previous datasets and delineating potential sources of contamination. The sampling frequency will depend primarily on the water resource being monitored and the water quality analysis will depend on the type of facility. The facilities required for a specific situation will depend on the type and amount of waste generated, potential for leachate formation, vulnerability of groundwater resources and potential for water usage or resource sensitivity.

Abstract

The generation of acid mine drainage (AMD), as a result of mining activities, has led to the degradation of groundwater quality in many parts of the world. Coal mining, in particular, contributes to the production of AMD to a large extent in South Africa. Although a vast number of remediation methods exist to reduce the impacts of AMD on groundwater quality, the use of a coal fly ash monolith to act as a reactive and hydraulic barrier has not been extensively explored. This study, therefore, aims to investigate how different ways of packing ash affect the hydraulic conductivity of ash and influence leachate quality when acid-mine drainage filters through the ash. Coal ash is highly alkaline due to the existence of free lime on the surface of the ash particles. Previous studies that investigated alternative uses of coal ash, particularly in AMD treatment, suggest that coal ash has the potential to neutralise pH in acid water and remediate acidic soils. To test the effects of different packing methods of coal ash on the hydraulic conductivity and quality of acid mine leachate flowing through it, several Darcy column tests will be conducted. During the course of these experiments, the following parameters will be measured, electrical conductivity, pH discharge, lime (CaCO3) and selected elements of environmental concern.

Abstract

The redox state of groundwater is an important variable for determining the solubility and mobility of elements which can occur in different redox states at earth surface conditions, such as Fe, Mn, Cr, As, U, N, S, V etc. Eh-pH diagrams are potentially invaluable for understanding and predicting the behaviour of these redox species yet, unlike pH, redox is seldom a routine field parameter due to the difficulties in measurement and interpretation.
This paper discusses the potential use and limitations of field measurements of the redox state of groundwater with specific reference to the geochemical behaviour of dissolved iron in the Table Mountain Group (TMG) aquifer. As part of an investigation into iron cycling within the TMG aquifer, the redox state of groundwater was estimated through three different methods, namely direct in-situ measurement of Eh, direct measurement of DO and calculation from iron speciation in groundwater. Comparison of the results from the three methods highlights the potential value of collecting redox data, but also the complexity of controls on redox potential. The redox measurements allowed the determination of the controlling reactions on iron mobility within the TMG, but only by using the iron speciation method to calibrate the in-situ values and thereby identify which redox pair was controlling redox equilibrium. As this requires measurement of redox ion pairs in solution, it is unlikely to become a routine method for redox assessment, unless the specific redox state of an element is critical in understanding its mobility. For the majority of groundwater site investigations, measurement of the dissolved oxygen content of groundwater is probably sufficient as a first pass.

Abstract

In South Africa, the use of stochastic inputs in surface water resources assessments has become the norm while this is rarely done for groundwater resources. Studies that have applied multi-site and multi-variate methods that incorporate stochastic generation of groundwater levels are limited. Stochastic based inputs account for uncertainties attributed to inherent temporal and spatial variability of hydrologic variables and climatic conditions. This study applied variable length block (VLB) stochastic generator for simultaneous generation of multi-site stochastic time series of rainfall, evaporation and groundwater levels. In the study, 100 stochastic sequences with record length of 34 years (1980-2013), similar to the historic one were generated. Performance of VLB was assessed by comparing single statistics of historic time series located within box plots of the 100 annual and monthly stochastically generated time series. The statistics used include mean, median, 25th and 75th percentiles, lowest and highest values, standard deviation, skewness, and serial and cross correlation coefficients. Majority (9 out of 10) of the historical statistics were mostly well preserved by VLB, except for skewness. Historic highest groundwater levels were mostly underestimated. Historic statistics below interquartile range (overestimation) is a common problem of weather generators which can be reduced by including additional covariates that influence atmospheric circulation. The generation of multi-site stochastic sequences support realistic assessment of groundwater resources and generation of groundwater operating rules.

Abstract

Underground Coal Gasification (UCG) is an emerging, in-situ mining technology that has the advantage to access a low cost energy source that is currently classified as not technically or economically accessible by means of conventional mining methods. As such it offers significant potential to dramatically increase the world's non-recoverable coal resource.

Groundwater monitoring in the South African mining industry for conventional coal mining as an example, is well established, with specific SANS, ASTM and ISO Standards dedicated for the specific environment, location and purposes. In South Africa a major impact of the coal mining industry can be a reduction in the groundwater quantity and quality. South-Africa's groundwater is a critical resource that provides environmental benefits and contributes to the well-being of the citizens and the economic growth. Groundwater supplies the drinking water needs of a large portion of the population; in some rural areas it represents the only source of water for domestic use. Utilization and implementation of groundwater monitoring programs are thus non-negotiable.

The groundwater quality management mission, according to the Department of Water and Sanitation in South-Africa, is set in the context of the water resources mission and is as follows:

"To manage groundwater quality in an integrated
and sustainable manner within the context of the National
Water Resource Strategy and thereby to provide an
adequate level of protection to groundwater resources
and secure the supply of water of acceptable quality."

The scope of this paper is to propose an implemention strategy and a fit-for-purpose groundwater monitoring program for any Underground Coal Gasification commercial operation. It is thus important to pro-actively prevent or minimise potential impacts on groundwater through long-term protection and monitoring plans. A successful monitoring program is one that consists of
(1) an adequate number of wells, located at planned and strategic points;
(2) sufficient groundwater sampling schedules; and
(3) a dedicated monitoring program and quality control standard.

In order to have an efficient monitoring program and to prevent unnecessary analysis and costs, it is also critical to determine upfront what parameters have to be monitored for the specific process and site conditions.

Abstract

Globally, cumulative plastic production since 1950 is estimated to have reached 2500 Mt of plastic. It is estimated up 60% of this plastic is either resting in landfills or the natural environment, including groundwater settings. Microplastics are small pieces of plastic ranging between 1μm – 5mm in size and have been found in every ecosystem and environment on the planet. Much of the available literature on microplastics is focused on marine environments with few in comparison focused on freshwater environments, and even fewer on groundwater settings.

The aim of this study is therefore to investigate the attenuation process responsible for influencing microplastic transport in saturated sands. This research will adapt colloid transport theory and experiments to better understand the movement of microplastics through sandy media. Saturated aquifer conditions will be set up and simulated using modified Darcy column experiments adapted from Freeze & Cherry (1979). Modified microplastics will be injected into the columns as tracers and the effluent concentrations measured by Fourier-transform infrared spectroscopy (FTIR). Breakthrough curves will then be plotted using the effluent concentrations to determine the attachment efficiency (α). It is expected the attachment efficiency will vary by microplastic type and size range. The Ionic strength of the solution flowing through the column and the surface charges of both microplastics and sandy surfaces are likely to influence the degree of attenuation observed. The relationship between different types of microplastics and collector surfaces from a charge perspective and their influence on the degree of attenuation will be evaluated.

Given the lack of literature, its ubiquitous presence and postulated effects on human health, this research is significant. Through this research, the transport and attenuation of microplastics through sandy aquifers can be better understood, and in the process inform future research and water resource management.

Abstract

When considering how to reduce contamination of petroleum hydrocarbons in shallow aquifers, it is important to recognize the considerable capacity of natural processes continuously at work within the secondary sources of contamination. This natural processes are technically referred to as Monitored Natural Attenuation (MNA), a process whereby petroleum hydrocarbons are deteriorated naturally by microbes. This approach of petroleum hydrocarbon degradation relies on microbes which utilise oxygen under aerobic processes and progressively utilises other constituents (sulphates, nitrates, iron and manganese) under anaerobic processes. MNA process is mostly evident when light non-aqueous phase liquids (LNAPLs) has been removed while the dissolved phase hydrocarbon compounds are prominent in the saturated zone. The case studies aim at determining feasibility and sustainability of Monitored Natural Attenuation process at different sites with varying geological setting.

Abstract

Identifying and characterising the vertical and horizontal extent of chlorinated volatile organic compound (CVOC) plumes can be a complex undertaking and subject to a high degree of uncertainty as dense non-aqueous phase liquid (DNAPL) movement in the subsurface is governed most notably by geologic heterogeneities. These heterogeneities influence hydraulic conductivity allowing for preferential flow in areas of higher conductivity and potential pooling or accumulation in areas of lower conductivity. This coupled with the density-induced sinking behaviour of DNAPL itself and the effects of groundwater recharge in the aquifer result in significant challenges in assessing the distribution and extent of CVOC plumes in the subsurface. It has been recognized that high resolution site characterization (HRSC) can provide the necessary level of information to allow for appropriate solutions to be implemented to mitigate the effects of subsurface contamination. Although the initial cost of HRSC is higher, the long-term costs can be substantially reduced and the remedial benefits far greater by obtaining a better understanding of the plume characteristics upfront. The authors will discuss a case study site in South Africa, where ERM has conducted HRSC of a CVOC plume to characterise the distribution of the source area and plume architecture in order to assess the potential risk to receptors on and off-site. The source of impact resulted from the use of a tetrachloroethene (PCE)-based solvent in an on-site workshop. The following methods of characterization were employed:
- Conducting a passive soil gas survey to identify and characterise potential source zones and groundwater impacts;
- Vertical characterisation of the hydrostratigraphy, contaminant distribution and speciation in real time using a Waterloo Advanced Profiling System (APS) with a mobile on-site laboratory;
- Using the Waterloo APS data to design and install groundwater monitoring wells to delineate the vertical and lateral extent of contamination; and
- Conducting a vapour intrusion investigation including sub-slab soil gas, indoor and outdoor air sampling to estimate current risk to on-site employees.
In less than a year, the risk at the site is now largely understood and the strategies for mitigating the effects of the contamination can be targeted and optimised based on the information gained during the HRSC assessment.

Abstract

The mitigation of groundwater impacts related to gold mining tailings disposal within the Orkney-Klerksdorp region was assessed and presented as a case study. The most pressing concern for the facility owners is the potential for pollution of water resources in the vicinity of the mines, especially after mine closure. The key focus of this paper is to describe how methods were applied to characterise the aquifer and keeping the source-pathway-receptor principles in mind. Characterisation also involves lessons learn by comparing pre-tailings deposition and post-tailings deposition aquifer bahviour. Ultimately the process followed in this paper has led to the development of a logical approach to estimate groundwater liability costs in a typical tailings environment. The link between hydrogeology, geotechnical engineering and civil engineering was identified as a critical foundation for the development of a successful groundwater management strategy

Abstract

The most used methods for the capturing of shallow groundwater contamination are the use of abstraction wells and infiltration trenches. The use of trenches for the interception of shallow groundwater contamination has become a popular choice of remediation method due to the lower cost than a comparable pump-and-treat system. Trenches have large surface areas which limits the tendency of filter media clogging with suspended media as well as only a single pump and lower maintenance requirements. An important consideration of the use of trenches is determining the effectivity before design and construction. To date, limited information on the effectivity of trench designs are available, therefore a method to determine the effectivity of a trench was devised. This paper will discuss this evaluation method and look at some cases where planned trenches were successful and some cases where they were not.

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

There is growing concern that South Africa's urban centres are becoming increasingly vulnerable to water scarcity due to stressed surface water resources, rapid urbanisation, climate change and increasing demand for water. Given South Africa's water scarcity, global trends for sustainable development, and awareness around the issues of environmental degradation and climate change, there is a need to consider alternative water management strategies. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to achieve the goal of a 'Water Sensitive City'. The concept of a Water Sensitive City seeks to ensure the sustainable management of water using a range of approaches such as the reuse of water (stormwater and wastewater), exploiting alternative available sources of supply, sustainable stormwater management and improving the resource value of urban water through aesthetic and recreational appeal. Therefore, WSUD attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. However, groundwater is often the least considered because it is a hidden resource, often overlooked as a form a water supply (potable and non-potable) and it is often poorly protected. The management of urban groundwater and understanding the impacts of WSUD on groundwater in South African cities is challenging, due to complex geology, ambiguous groundwater regulations and management, data limitations, and lack of capacity. Thus, there is a need for an approach to assess the feasibility of management strategies such as WSUD, so that the potential opportunities and impacts can be quantified and used to inform the decision making process. An integrated modelling approach, incorporating both surface and subsurface hydrological processes, allows various urban water management strategies to be tested due to the complete representation of the hydrological cycle. This integration is important as WSUD is used to manage surface water, but WSUD known to utilise groundwater as a means of treatment and storage. This paper assesses the application, calibration and testing of the integrated model, MIKE SHE, and examines the complexities and value of establishing an integrated groundwater and surface water model for urban applications in South Africa. The paper serves to demonstrate the value of the application of MIKE SHE and integrated modelling for urban applications in a South African context and to test the models performance in Cape Town's unique conditions, accounting for a semi-arid climate, complex land use, variable topography and data limitations. Furthermore, this paper illustrates the value of integrated modelling as a management tool for assessing the implementation of WSUD strategies on the Cape Flats, helping identifying potential impacts of WSUD interventions on groundwater and the potential opportunities for groundwater to contribute towards ensuring to Cape Town's water security into the future.

Abstract

Understanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The multivariate statistical approach includes self organizing maps (SOM'S) of neural networks, hierarchical cluster (HCA) and principal component analysis of the hydrochemical data were used to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggests that different natural hydrogeochemical processes like simple dissolution, mixing, weathering of carbonate minerals and of silicate weathering and ion exchange are the key factors. Added to this is the imprint of anthropogenic input (use of fertilizers, septic practice poorly designed and uncontrolled urban discharges). Limited reverse ion exchange has been noticed at few locations of the study.

Abstract

Water resource management and risk management rely heavily on the availability of data and information. This includes the volumes of water needed, the volumes of water available, where the available water is and where it would be needed, etc. Historical records help to determine past use and gives a way to predict future use in the case of water resource planning while it helps to predict the possibility of floods and droughts when it comes to risk management. Rainfall data can provide valuable data for both water resource planning and risk management, since it is the input to the hydrologicalcycle. It is possible to determine dry and wet cycles using the cumulative deviation from mean that is calculated from the measured rainfall data. This was done for the Gnangara Mound in Australia, with the results giving a fair representation of the dry and wet cycles in the area. Data measured over a period of about 30 years for the Zachariashoek sub-catchment analyzed in the same fashion provided wet-dry cycles of about 8 years. The rainfall measurements had been taken at various settings around the catchment, and varied from place to place and differed from that measured at the WeatherSA stations in the vicinity. This article will draw a comparison between the Zachariashoek data and the WeatherSA data to determine whether the WeatherSA data followed the same patterns for the wet-dry cycles observed in Zachriashoek. It will then analyse the longer data record available for the WeatherSA data from 1920 to 2012. It is expected that the shorter wet-dry cycles seen in Zachariashoek will become part of longer wet-dry cycles that can be used in water resource planning and risk management. Rainfall is also dependent on a number of factors

Abstract

It has become increasingly apparent that understanding fractured rock mechanics as well as the interactions and exchanges between groundwater and surface water systems are crucial considering the increase in demand of each in recent years. Especially in a time where long term sustainability is of great importance for many water management agencies, groundwater professionals and the average water users. Previous callow experience has shown that there is a misunderstanding in the correct interpretation and analyses of pumping test data. The fracture characterisation (FC) method software provides a most useful tool in the overall understanding of a fractured rock aquifer, quantification of the aquifer’s hydraulic (flow regime and flow boundary conditions) and physical properties, only if the time-drawdown relationships are correctly interpreted and when the theoretical application principles are applied. Interpretation is not simply a copy and paste of the aquifer test data into the software to get a quick answer (especially when project time constraints are considered), however, recent experiences with numerous field examples, required intricate understanding of the geological environment, intended use and abstraction schedules coupled with the academic applications on which the software was based for correct interpretation.

Through the application of correct interpretation principles, a plethora of flow information becomes available, of which examples will be provided in the presentation itself. By achieving this, flow can be conceptualised for inputs into a conservative scale three-dimensional numerical flow model and calibrated based on measurable data in a fraction of the time of a conventional regional model. Although higher confidence levels are achieved with these practical solutions, monitoring programmes are still required to provide better insight of the aquifer responses to long-term abstraction and recovery.

Abstract

The electrical resistivity tomography (ERT) method has become one of the most commonly used geophysical techniques to investigate the shallow subsurface, and has found wide application in geohydrological studies. The standard protocols used for 2D ERT surveying assume that the survey lines are straight; however, due to the presence of infrastructure and other surface constraints it is not always possible to conduct surveys along straight lines. Previous studies have shown that curved and angled survey lines could impact on the recorded ERT data in the following ways: 1) the true geometric factors may differ from the assumed geometric factors and thus affect the calculated apparent resistivities, 2) the depths of investigation may be overestimated, and 3) the recorded apparent resistivities may be representative of the subsurface conditions at positions laterally displaced from the survey line. In addition, previous studies have shown that although the errors in the apparent resistivities may be small even for large angles and curvatures, these errors may rapidly increase in magnitude during inversion. In this paper we expand on the previous work by further examining the influence of angled survey lines on ERT data recorded with the Wenner (?) array. We do this by: 1) calculating the changes in the geometric factors and pseudo-depths for angled survey lines, 2) forward and inverse modelling of ERT datasets affected by angled survey lines, and 3) examining the impact of angled survey lines on real ERT datasets recorded across different geological structures.

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

Artificial Intelligence (AI) has been used in a variety of problems in the fields of science and engineering in particular automation of many processes due to their self-learning capabilities as well as their noise-immunity. In this paper, we describe a study of the applicability of one of the popular branch of AI (Artificial Neural Network (ANN)) as an alternative approach to automate modelling of one-dimensional geoelectrical resistivity sounding data. The methodology involves two ANNs; first one for curve type identification and the other one for model parameter estimation. A three-layer feedforward neural network that was trained from geoelectrical resistivity data taken at boreholes with geology logs was used to predict earth models from measured data without the need to guess the initial model parameters or use synthetic data as is done with most conventional inversion approaches. The motivation for using the ANN for geophysical inversion is that they are adaptive systems that perform a non-linear mapping between two sets of data from a given domain. For network training, we use the back-propagation algorithm. An example using data from southern Malawi shows that the ANN results outperforms the conventional approaches as the results after adequate training, produce reasonably accurate earth models which are in agreement with borehole log data.

Abstract

A review from international literature discredits the capability of MODFLOW to simulate mine water rebound, due to the nonstandard hydrogeology of underground mine systems. The conceptual understanding is that, after cessation of dewatering, mine water inflow rates and hydraulic heads are related to the void-volume, the differences in head between the water in the mine void and head dependent source, plus natural recharge to the mine voids. The flooded mine voids in the study area are partially underlain by a dolomitic aquifer. The other head dependent source of inflow into the mine voids are the surrounding and overlying Karoo aquifers. Head independent inflow rates into the mine voids, using the long term decant rates, was estimated to be 0.2% of rainfall. During mining, dewatering occurred at approximately 3 to 6 Ml/d. The objective of the model was therefore to simulate the changes head-dependent inflow rates during the rebound period. Analysis of the water level recovery data depicted that once the mine filled up with water, the hydraulic head of the mine rose with the elastic storage coefficient value of the mine void and not the specific retention as conditions changed from unconfined to confined. A three layer model was setup, to represent the two seams mined, separated by a deep Karoo aquifer. The presence of the dolomite on the mine floor was incorporated using the general head boundary package. Head dependent influx from overlying shallow and intermediate Karoo aquifers were simulated using the river package. All model layers were simulated as confined, initially to avoid model convergence issues. The confined setup proved to be the core in simulating mine water rebound with MODFLOW. The modelling exercise showed that storage during rebound is a boundary condition. This simply means that the complexity of mine water rebound can only be achieved in MODFLOW by proper time stepping and dividing the model into different stress periods to represent the changes in storage. Rebound in the study area, modelled with 21 stress periods produced a perfect water level recovery data for the different mine compartments. This was achieved by applying storage capacities of between 0.3 to 0.006 to simulate rebound during unconfined conditions, and values of between 10-4 and 10-5 when the mine void is flooded. The results showed that the inflow from the dolomitic aquifer steadily decreased from 4121 m3/d to 0 m3/d as the mine hydraulic head increased and rose over the head in the dolomitic aquifer. During the same period, inflow from the surrounding Karoo aquifers decreased from 2422 m3/d to less than 10 m3/d. The results of the model were very important in determining the volumes of water to be abstracted from the mine voids for ash-backfilling. {List only- not presented}

Abstract

Mining site remnants are everlasting and impact the groundwater regime on a long term scale. An integrated approach to geoscience is necessary due to the complexity of nature and the unknown relationships that must be discovered to further the understanding of impacts on the natural environment. Furthermore, groundwater resources are negatively impacted by mining activities affecting the groundwater quality and quantity. Underground coal mining can be accompanied by roof failure events. This may change the matrix which subsequently alters the flow regime; leads to variations within the water chemistry, provided there is inter- aquifer connectivity; and alters the recharge rate. Dewatered mine voids are in direct contact with oxygen initiating oxidation reactions, depending on the geology of the specific site. A change in water chemistry was analyzed, and this coincides with a roof failure event as interpreted from water level measurements. Concentrations of Mg, Ca, and alkalinity indicate anomalous changes that are still in effect, five to six years after the majority of water levels had stabilized. The changes in the system coincides with and correlates to events of roof failure and different parameters. The latter changes are applied as extra tools when interpreting different site specific anthropogenic induced impacts on the system. Also within this study, constant rate pumping tests were conducted for the interest of the hydraulic properties, using three farming boreholes. The results put forward a range of 0.21 – 0.44L/s and 6.5 – 11.5m2 /d, for sustainable yield and transmissivity, respectively. Furthermore, it is recommended that a better understanding can be gained on system behaviors if chemistry correlations can be gathered through certain events causing specific systems to be in disequilibrium. It is also recommended that additional pumping tests will allow more insightful interpretation and delineation between the abovementioned chemical and water level changes. Finally, the combination of parameters during events can aid in deciding the most appropriate analytical models used for further analysis.

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resource in South Africa. The Western Cape Regional Office, Geotechnical Service Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Olifants Doorn-Berg and Breede-Gouritz. Twenty-nine monitoring routes comprising 800 sites in total are monitored across the Western Cape Region. The purpose of this paper is to create awareness of groundwater related databases and the type of information products used in assessing the status of data bases and groundwater resources. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answer is: "What is the current groundwater data management situation in the Regional office?" With the GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored and when is it being monitored? These questions are applicable to the Region, Water Management Areas, the monitoring route and geosites. Graphical time-series information generated from available data, in combination with the generated geographical information, showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the resource: "The Hidden Treasure".

Abstract

Gold Mining activities the past 60 years at AngloGold Ashanti polluted the groundwater underlain by 4000 ha of land at the Vaal River and West Wits operations in South Africa. Sulphide material in Tailings Storage Facilities, Waste Rock Dumps and extraction plants produce Saline Mine Drainage with Sulphate, minor salts and metals that seep to the groundwater and ultimately into surface water resources. Water regulation requires mines to prevent, minimise/ reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources. The impact of the pollution was determined and possible technologies to treat the impact were evaluated. Source controls of proper water management by storm water management, clean dirty water separation, lined water conveyance structures and reduced deposition of water on waste facilities is crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and re-use of this water was selected. In future possible treatment of the water would be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 750 ha of woodlands as phytoremediation, interception trenches of 1250 m, 38 interception boreholes and infrastructure to re-use this water in 10 water management areas is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 ml/day. The established woodlands of 150 ha proof successful to intercept diffused seep over the area of establishment and reduce the water level and base flow. The 2 implemented trenches of 1000 m indicate a local decline in the water level with interception of shallow groundwater within 1-2 m from surface. The 2 production interception well fields abstracting 50 and 30 l/s respectively indicate a water level decline of between 2 to 14 m with regional cones of depression of a few hundred meters to intercept groundwater flow up to 20 meter. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long term clean-up to return the land to save use. The gold and uranium prize is securing the removal of the sources through re-processing of the tailings and waste rock dumps. After removal of the sources of pollution the remediation schemes would have to be operated for 20 years to return the groundwater to an acceptable standard of stock watering and industrial water use. The water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

This paper describes the characteristics of the deep aquifer systems in South Africa as derived from the available data. The study formed part of the larger WRC project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). A review of the available literature relevant to potential deep aquifers in South Africa was done to allow characterisation of these aquifer systems. In addition, data obtained from the geological logs of the SOEKOR and KARIN boreholes were considered.

This paper focuses on deep aquifers in 1) the Karoo Supergroup, 2) the basement and crystalline bedrock aquifers, 3) the Table Mountain Group, 4) the Bushveld Igneous Complex and 5) the dolomites of the Transvaal Supergroup. From the available data the deep aquifer systems are described in terms of the following characteristics: lithology, occurrence, physical dimensions, aquifer type, saturation level, heterogeneity and degree of isotropy, formation properties, hydraulic parameters, pressurisation, yield, groundwater quality, and aquifer vulnerability.

The results of the study show that the deep aquifer systems of South Africa are generally fractured hard-rock aquifers in which secondary porosity was developed through processes such as fracturing and dissolution. The primary porosity of most of the rocks forming the aquifers is very low. Apart from the dolomite aquifers, most of the water storage occurs in the rock matrices. Groundwater flow predominantly takes place along the fractures and dissolution cavities which act as preferential pathways for groundwater migration. The aquifers are generally highly heterogeneous and anisotropic.

The deep aquifers are generally confined and associated with positive hydraulic pressures. The groundwater quality generally decreases with depth as the salinity increases. However, deep dolomite aquifers may contain groundwater of good quality. Due to the large depths of occurrence, the deep aquifer systems are generally not vulnerable to contamination from activities at surface or in the shallow subsurface. The deep dolomite aquifers are a notable exception since they may be hydraulically linked to the shallower systems through complex networks of dissolution cavities. The deep aquifers are, however, very vulnerable to over-exploitation since low recharge rates are expected.

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

Monitored Natural Attenuation (MNA) refers to the monitoring of naturally occurring physical, chemical and biological processes. Three lines of evidence are commonly used to evaluate if MNA is occurring, and this paper focusses on the second line of evidence: The geochemical indicators of naturally occurring degradation processes and the site-specific estimation of attenuation rates.

The MNA geochemical indicators include the microbial electron acceptors (e.g. dissolved oxygen, nitrate and sulphate) and the metabolic by-products (manganese (II), iron (II) and methane). In addition, redox and alkalinity are important groundwater indicators. So as to properly assess the geochemical trends a groundwater monitoring well network tailored to assessing and defining the contaminant plume is required.

The expressed assimilative capacity (EAC) is used to estimate the capacity of the aquifer to degrade benzene, toluene, ethylbenzene and xylene (BTEX compounds) using the concentrations of geochemical indicators. Using the EAC, the groundwater flow through a perpendicular cross-section of the source area, and the source mass, the life of the contaminant source can be made.

A practical example of the performance monitoring of MNA using geochemical parameters is described for a retail service station in KwaZulu-Natal, which has groundwater impacted by a petroleum hydrocarbon plume. This includes a description of the monitoring well network, the geochemical measurements, the calculation of the EAC, and the estimated life of the contaminant source.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Due to technical, social, and economic limitations, integrated groundwater management presents a significant challenge in developing countries. The significance of this issue becomes even more pronounced in groundwater management, as this resource is often overlooked and undervalued by decision-makers due to its status as a “hidden resource,” despite the fact that it provides multiple ecosystem services. This study aims to establish the technical hydrogeological foundation in rural basins of central Bolivia through alternative, simplified, and cost-effective methods and tools. The study includes applying geophysical techniques, such as Electrical Resistivity Tomography, to determine the conceptual hydrogeological model of a micro-basin. In addition, a soil water balance approach was applied, characterizing 24 biophysical variables to identify groundwater recharge zones, while global circulation models provided a substitute for unreliable meteorological data. Furthermore, a participatory model was developed to identify recharge areas in upper basin areas within the framework of developing a municipal policy for their protection. The participatory model included local knowledge in all stages of methodology development, considering the characteristics of the local plant communities and the spatial distribution of local rainfall. The research findings have already contributed to resolving socio-environmental conflicts in Bolivia and establishing a foundation for effective water governance by empowering local rural communities. This study has demonstrated the feasibility of using alternative, simplified, and low-cost methods and tools to establish the technical hydrogeological basis, which can inform public policies to promote sustainable groundwater management in developing countries.