Conference Abstracts
Title | Presenter Name | Presenter Surname | Area | Conference year | Keywords | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A conceptual model for methane occurrences in the Western Karoo as part of a geochemical baseline for shale gas development | Danita | Hohne | Western Cape | 2023 | Western Karoo, shale gas development, shallow and deep groundwater, thermogenic and biogenic methane; isotopes | ||||||
AbstractAlthough methane occurrences have been documented in Karoo groundwater in the past, the advent of possible unconventional oil and gas extraction now made it important to determine the type and origin of this methane to assess the possibility of shallow-deep groundwater interaction. During groundwater surveys from 2016-2021, methane was detected at three sites in the Western Karoo: the Soekor sites KL1/65, QU1/65 and an unidentified shallow groundwater borehole (BHA). The Soekor wells were drilled in the 1960-1970s to depths of between 2500-3500 meters in South Africa’s search for oil. On the other hand, Borehole BHA was drilled in 1998 and only up to a depth of 298m. This study aimed to determine methane’s origin through gas and isotope analyses. To do this, groundwater, rock and soil samples were analysed to determine whether the methane is thermogenic or biogenic and its origin. We determined that methane was both thermogenic and biogenic and probably originated from different layers of the Karoo formations and that mixing occurs between deep and shallow aquifer systems at these Soekor sites. This information was used to develop a final conceptual model of what the Karoo underground system might look like and to make recommendations for establishing a groundwater baseline. |
|||||||||||
Water Quality of Cape Town Aquifers – The WWQA African Use Case | K | Riemann | South Africa | 2023 | WWQA, Water quality, Awareness | ||||||
AbstractGlobally, rivers, lakes and groundwater face complex anthropogenic water quality alterations posing risks to human health, food security and ecosystems. The World Water Quality Alliance (WWQA) forms an open, global consortium, pooling expertise on water quality science and technology innovation and providing a participatory platform for water quality assessments and co-designing tailored and demand-driven services. It addresses priority topics relevant to water governance, scalable water solutions and emerging issues in water management. The African Use Cases provided an initial testbed that puts the quality of surface water and groundwater into the context of the local 2030 Agenda and its multiple linkages across the Sustainable Development Goals. Central to the initial Africa Use Cases was the integration of in-situ, remote sensing-based earth observation and modelling data to derive the best possible current state of water quality (baseline). Of the three African Use Cases, “Cape Town’s Major Aquifer Systems” focused mainly on groundwater quality in an urban environment. One of the success factors for the Cape Town Aquifer Use Case was the ability of the team to integrate the three different data types of the triangle approach on a sub-catchment scale. This required understanding the complex surface and groundwater systems and their interaction (flow paths and fluxes) in the urban environment. A robust stakeholder engagement process and the introduction of transformative art also drove the success of the Cape Town Use Case. The outcomes of this process will be presented and discussed in this presentation. |
|||||||||||
Modelling the Impact of Groundwater Pumping on Karst Geotechnical Risks in Sete Lagoas (MG), Brazil | P | Galvão | Brazil | 2023 | Karst hydrogeology; numerical model; water management; subsidence; overexploitation | ||||||
AbstractUrban karst terrains can experience geotechnical issues such as subsidence or collapse induced/accelerated by groundwater withdrawal and civil works. Sete Lagoas, Brazil, is notable for overexploiting a karst aquifer, resulting in drying lakes and geotechnical issues. This study aims to evaluate the progression of geotechnical risk areas from 1940 to 2020 and to simulate future scenarios until 2100. Historical hydraulic head data from the 1940s (when the first pumping well was installed) to the 2000s, a 3D geological model, and a karst-geotechnical risk matrix for defining risk levels were employed to develop a calibrated Feflow numerical model. The results indicate that, before the first well in 1942, the groundwater flow direction was primarily towards the northeast. In the 1980s, due to the concentration of pumping wells in the central area, a cone of depression emerged, causing the flow directions to converge towards the centre of the cone, forming a zone of influence (ZOI) of approximately 30 km². All 20 geotechnical events recorded between 1940 and 2020 have occurred in high or considerable-risk zones where limestone outcrops or is mantled in association with the ZOI. For future scenarios, if the current global well pumping rate (Q = 144,675 m³/d) from 2020 remains constant until 2100, the high and considerable geotechnical risk zones will continue to expand. A 40% decrease in the global rate (Q = 85,200 m³/d) is necessary to achieve a sustainable state, defined by reduced and stabilized risk zones. |
|||||||||||
First Nations Communities as Partners in Hydrogeology | S | Bourke | Australia | 2023 | Cultural Water Values, First Nations Groundwater Connections, Social Hydrogeology | ||||||
AbstractAboriginal and Torres Strait Islander people have inhabited the lands now known as Australia for over 65,000 years. Their communities are intricately connected to the land and waters through culture and tradition. However, there are few examples of integrated water resource management that serve Aboriginal and Torres Strait Islander communities or cultural interests. This is particularly the case for groundwater. In Australia, Indigenous connections to groundwater have historically been overlooked or, in some cases, assumed not to exist. On the contrary, many Aboriginal and Torres Strait Islander cultures have longstanding physical and spiritual connections to a range of artesian and subartesian groundwater resources. These cultures also house accurate records of groundwater systems. Despite this, groundwater management in Australia remains dominated by Western scientific perspectives, and the groundwater sector poorly integrates Indigenous stakeholder concerns or knowledge into groundwater management and planning. IAH Australia has prepared and signed an Indigenous Groundwater Declaration intending to raise awareness among the groundwater community of the value of Indigenous perspectives and knowledge of groundwater systems. This Declaration can be viewed and signed at http://declaration.iah.org.au. This presentation provides examples of effective partnerships between Indigenous Communities and Government or Academic groundwater professionals. While progress has been made, challenges must be overcome to integrate Indigenous knowledge and connections into groundwater resource management. |
|||||||||||
From the national hydrogeological map to regional ones. How to identify a suitable level of detail to work with? An application in Kunene and Omusati Regions in Northwestern Namibia | A | Brugeron | Namibia | 2023 | Kunene, Namibia, Omusati, economic assessment, groundwater potential | ||||||
AbstractGroundwater is a critical resource in Namibia, particularly in the Kunene and Omusati Regions, which are among the driest in Sub-Saharan Africa. Hydrogeological mapping is essential to ensure this resource’s sustainable use and management. The hydrogeological map of Namibia was updated recently (2021). However, the details of a 1:1M map are too coarse for regional groundwater management. An ongoing study of groundwater potential assessment in the two regions required downscaling the information to 1:250 000. This work made use of geological maps 1:250 000 from the Geological Survey of Namibia, about 430 selected wells including 20 recent boreholes, 117 reinterpreted pumping tests, some existing reports from private companies, academic works including a PhD thesis, interviews with local water resource experts and statistical analysis of 6 500 wells from the National Groundwater Database (GROWAS II) maintained by the Ministry of Agriculture, Water and Land Reform (MAWLR). The regional hydrogeological map obtained was then associated with the recharge evaluated in a separate task of the same project to assess the available groundwater sustainability. By assessing abstraction costs and water demand, the work gives insights into areas where groundwater abstraction can be increased or restricted to ensure sustainable use. As conscientious and serious as this study may be, it does not replace a master plan but allows a global vision of the development potential of groundwater at a regional scale. This study was financed by the French Agency for Development (AFD) under a tripartite agreement (MAWLR-MEFT-AFD). |
|||||||||||
Variable-scale conceptual framework for shallow groundwater systems in the low-relief, water-limited Canadian Boreal Plains | K | Hokanson | Canada | 2023 | Groundwater-surface water interactions, long-term study, recharge, spatiotemporal scales, subsurface connectivity | ||||||
AbstractCase studies illustrate a conceptual framework for shallow groundwater flow systems’ temporal and spatial variability with groundwater-surface water interactions in the Boreal Plains of Canada. The framework was developed using a twenty-year hydrometric dataset (e.g., climatological and streamflow data, hydraulic heads, vertical hydraulic head gradients, geochemical and isotopic signatures). The region is characterized by low-relief glacial landscapes, with a mosaic of forestlands and peatlands, and a subhumid climate, resulting in spatially heterogeneous storage and transmission properties, variable recharge and evapotranspiration potentials, and highly complex patterns of water movement. Two primary spatiotemporal scales were examined to create a holistic, variable-scale conceptual model of groundwater movement: the large scale (e.g., glacial landforms, regional topography, decadal climate cycles) and the small scale (e.g., individual landcover, local hummocks, annual moisture deficits). Water table behaviour, evapotranspiration rates, and runoff were controlled by a hierarchy of interactions between hydrological processes occurring at different spatiotemporal scales; however, the specific order of controls depends on the hydrogeological setting. The case studies, supported by empirical and numerical modelling, demonstrate that smaller-scale heterogeneities in geology and recharge can dominate over topographic controls, particularly in areas with high conductivity or hummocky terrain, where the climate, geology, and topographic relief are similar. Many hydrogeological studies rely on surface topography as a first‐order control; however, with field observations and modelling, this conceptual framework demonstrates the need to consider the potential dominance of subsurface characteristics and processes, plus climate, especially in landscapes with low recharge and low relief. |
|||||||||||
Micro pore-pressure sensor (MEMs) and analysis technologies – towards a future of multi-scale groundwater monitoring | W | Timms | Australia | 2023 | multi-scale, pore pressure, sensors, analysis | ||||||
AbstractMicro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions. |
|||||||||||
The impact of storage and hydrogeological conditions on the design and recovery performance of small-scale urban ASR systems | N | Hartog | The Netherlands | 2023 | Urban Groundwater, Managed aquifer recharge, Aquifer Storage and Recovery, MAR, ASR | ||||||
AbstractAquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow. In this study, we evaluated the impact of these factors by adapting and developing analytical solutions and numerical modelling, with recently established Urban ASR systems as a reference for a wide range of realistic field conditions. We validated the accuracy and usefulness of the analytical solutions for performance anticipation. Results showed that a simple, analytically derived formula describing dispersion losses solely based on the dispersion coefficient (α) and the hydraulic radius of the injected volume (Rh) provided a very good match for all conditions tested where α/Rh<0.2. An expansion of the formula to include the development of recovery efficiency with subsequent cycles (i) was also derived and in keeping with simulation results. Also, displacement losses were found to be significant at groundwater flow velocities that are typically considered negligible, particularly as displacement and dispersion losses disproportionally enforced each other. For specific conditions where the displacement losses are dominant, using a downgradient abstraction well, effectively resulting in an ASTR system, might be beneficial to increase recovery efficiencies despite increased construction costs and design uncertainty. |
|||||||||||
Platinum-Group-Elements and Total Organic Carbon in hyperalkaline springs at the Ronda peridotites (Malaga, Spain) as proxies of the origin of dissolved methane gas | Ojeda | L | Malaga, Spain | 2023 | Hyperalkaline springs, Methane, Platinum-Group-Elements, Ronda peridotites, Total Organic Carbon | ||||||
AbstractThe serpentinization of ultramafic rocks is a process in which minerals of ferromagnesian nature (e.g., olivine) are transformed into serpentine and produce groundwater with a very high pH. In these settings, CH4 can be produced by combining H2 from serpentinization and CO2 from the atmosphere, soil, carbon-bearing rocks, or mantle, although the microbial generation of CH4, mediated by methanogens utilizing CO2, formate and/or acetate can be another source in these aquifers. In this sense, the hydrochemistry of hyperalkaline springs can provide valuable information about gas origin. The Ronda peridotites (Malaga province, Spain) are one of the world’s largest outcrops of the subcontinental mantle (~450 km2). Hyperalkaline springs (pH>10) emerging along faults present a permanent low outflow (<1 L/s), Ca2+- OH- facies and residence times exceeding 2,000 years. The fluids, poor in Mg2+ and rich in K+, Na+, Ca2+ and Cl-, also contain significant concentrations of dissolved CH4 and other hydrocarbons. Water samples have been collected from eight hyperalkaline springs and analyzed for major, minor and trace elements, including Platinum Group Elements (PGE) and Total Organic Carbon (TOC). The most mobile PGEs (Pd and Rh) are present in all the springs, indicating the existence of potential catalysts for the abiotic synthesis of CH4. High TOC concentrations are observed in some studied springs where previous analyses (i.e., bulk CH4 isotopes) have indicated a microbial CH4 origin. |
|||||||||||
The impacts of climate change on groundwater in South Africa | Z | Gaffoor | South Africa | 2023 | CMIP6, GRACE data, groundwater recharge potentia | ||||||
AbstractClimate change is expected to have a significant impact on freshwater resources across the globe. Changes in the distribution and quantities of rainfall over the coming decade will impact various earth systems, such as vegetation, contributions to streamflow, sub-surface infiltration and recharge. While groundwater resources are expected to act as a buffer, changes in rainfall will ultimately impact the recharge process and, thus, groundwater reserves. Understanding these changes is a crucial step to adapt better and mitigate climate change’s impacts on water resources. This is valid in South Africa, where much of the population depends on groundwater as a freshwater supply. Hence, this research presents the status quo regarding climate change’s impacts on South Africa’s groundwater resources. Reviewing relevant literature, the impacts on recharge, groundwater quantity (storage changes), discharge and groundwater-surface water interactions, groundwater quality, and groundwater-dependent ecosystems are discussed. In addition, utilizing factors such as rainfall, slope and vegetation cover collected from CMIP6 climate projections, changes in groundwater recharge potential from the past through the present and future are demonstrated. The findings illustrate uncertainty over the long-term impacts of climate change on groundwater for different regions and various aquifers. However, global warming could lead to reduced recharge, which impacts groundwater reserves. |
|||||||||||
Units for joint management of cross-border groundwater impacts in Transboundary Aquifers: An overview of concepts and methodologies | C | Morales | 2023 | cross-border groundwater impacts, hotspots identification, joint management units, time and space scales factor, transboundary aquifers, zoning | |||||||
AbstractThis study aims to contribute to the conceptual and methodological development of units of joint management in transboundary aquifers (TBAs) to prevent and mitigate cross-border groundwater impacts (GWIs) in quantity and/or quality. Joint management units are a relatively new but growing topic in the field of TBAs, and their conceptualisation and appropriate identification are still at an early stage. By reviewing the literature on the subject and elaborating on its terminology, main features, and current methodological progress, a comparison of the existing methodologies for identifying such units is analysed. On this basis, trends and recommendations for further research and application of such methodologies to the joint management of TBAs are presented. The literature on this issue is scarce and has been published mainly in the last five years. These publications lack consistency in the use of concepts and terminology. The above has led to miscommunication and semantic issues in the concept behind such units and in comprehending the particular challenges of identifying them. Still, some directions and methodologies for identifying or directly delineating these management units have been proposed in the literature. However, no analysis from these methodological attempts has been conducted; thus, there are no lessons to be learned about this progress. This research looks forward to closing these gaps and making headway toward dealing with cross-border GWIs in TBAs, thus helping countries meet international law responsibilities and maintaining stable relationships among them. |
|||||||||||
The application of artificial intelligence techniques to support groundwater management in Southern Africa | Z | Gaffoor | South Africa | 2023 | Big data analytics, Machine learning, transboundary aquifers | ||||||
AbstractThe beneficial groundwater use in the Southern African Development Community (SADC) is well documented. Groundwater plays a vital role in the freshwater supply mix and, in some cases, is the only source of freshwater, especially in the arid region of SADC. However, the management of this resource is hampered by numerous challenges, such as lack of data, limited tools to leverage available data, lack of resources, institutional mismanagement, and climate change, amongst others. Of these challenges, the lack of data and the tools needed to transform this data into information has consequences for the decision-making process. Hence, this research attempts to address this challenge by demonstrating the use of big data and artificial intelligence (AI) to fill data gaps with new unconventional sources and model groundwater processes to transform data into actionable information. The presentation focuses on introducing the landscape of groundwater big data in SADC, followed by a review of regional AI applications. After that, novel approaches to using AI in various aquifers across SADC are demonstrated in their applicability to support groundwater management. Finally, the challenges facing the use of AI in SADC are discussed, followed by opportunities for new research based on the current state-of-the-art AI techniques. The results illustrate that AI can be a helpful tool for supporting groundwater management in SADC. However, the need for enhanced data collection is evident for these techniques to be generally applicable. |
|||||||||||
Alluvial aquifer modelling with MODFLOW in a case of a wellfield in a climate change context (Clermont-Ferrand, France) | J | Labbe | France | 2023 | Alluvial aquifer, Groundwater Modelling, Climate change, water management | ||||||
AbstractThis work is part of the AUVERWATCH project (AUVERgne WATer CHemistry), which aims to better characterise some Auvergne water bodies, specifically the alluvial hydrosystem of Allier River (France). Alluvial aquifers constitute worldwide a productive water resource, superficial and easily exploitable. In France, 45% of the groundwater use comes from these aquifers. The study site is a wellfield that withdraws 8.5 million m3 of water annually from an alluvial aquifer to produce domestic water for 80% of the local population. At the watershed scale, precipitations have decreased by -11.8 mm/y, air temperatures have increased by 0.06°C/y and the river flow has declined by 20.8 Mm3 /y on 2000 – 2020. In the summer period, at least 50% of the river flow is ensured by the Naussac dam (upstream catchment part), but the recent winter droughts have not allowed the dam to replenish. Thus, water stakeholders are concerned that the productivity of the wellfield could be soon compromised. Based on geological, geophysical, hydrochemical, and hydrodynamic surveys, a numerical model of the wellfield is being developed using MODFLOW. The calibration in natural flow regime is successful using a range of hydraulic conductivities going from 1×10-3 to 1×10-4 m/s (pilot points method), consistent with the pumping tests. Preliminary results show that the river entirely controls the groundwater levels at all observation points. The perspective is now to calibrate this model in a transient regime by integrating domestic water withdrawals to determine how low the river can go without affecting the wellfield productivity. |
|||||||||||
Tracing an arenitic aquifer by DNA-labelled nano particles | A | Gargini | Italy | 2023 | nanotechnology; DNA-labelled nano particles; arenite; groundwater; tracer test; Northern Apennines | ||||||
AbstractThe results of a full field application of a DNA-based nano tracer in an arenitic aquifer are presented along with the comparison with the breakthrough of a classical tracer injected in parallel. DNA is encapsulated into amorphous silica spheres (nanoparticles), protecting the molecule from chemical and physical stresses. The main advantages of using DNA with classical tracers, like ionic or fluorescent, are the lower detection concentration and the chance to perform multi-tracer tests with many distinct signatures of injection. To the authors’ best knowledge, this is the first tracing adopting nano-particles on full field conditions in a sedimentary fractured aquifer. Preliminary tests in the lab were performed adopting either deionized water or groundwater collected at the experimental site: a set of nanoparticles at a known concentration was dissolved by adding a buffered fluoride solution, and DNA was then quantified by qPCR reaction (SYBR green). The hydrogeological setting is represented by a Miocenic marine arenitic aquifer (Pantano formation) outcropping extensively in Northern Apennines (Italy) and the main groundwater reservoir for public water supply through the uptake of many perennial springs. The main purpose of the tracing was to verify the transmissive capacity of fractures with high aperture (15-20 cm) identified by optical and acoustic televiewers inside an 80 m deep borehole. The injection was performed inside the borehole, and the tracer’s recovery was between 5-15 m, both in the uptake points of two perennial springs and in another borehole drilled nearby. |
|||||||||||
A methodology for uncertainty quantification of dewatering volumes under the context of open-cast mining | C | Rivera Villarreyes | 2023 | FEFLOW, Groundwater Modelling, mining, PEST, PESTPP | |||||||
AbstractGroundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications. |
|||||||||||
Regional-scale identification of recharge or discharge using remote sensing and GIS: Implications towards groundwater-surface water interactions | K | Banda | Zambia | 2023 | Barotse Floodplain, Groundwater-Surface water, Zambezi River, Zambia, Ecosystems | ||||||
AbstractIdentifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface water and groundwater resource management, and ecosystem protection. This study seeks to identify potential GW-SW discharge and recharge areas around the Barotse Floodplain. The results of remote sensing analysis using the Normalised Difference Vegetation Index (NDVI) show that the vegetation is sensitive to the dynamics of groundwater level, with shallower levels (< 10 m) in the lower reaches compared to deeper levels (>10 m) in the upper catchment). These zones are further investigated and likely represent geological variability, aquifer confinement and the degree of GW-SW interactions. GW-SW interactions likely are influenced by an interplay of factors such as water levels in the groundwater and surface level and hydrogeological conditions. Based on the findings, the wetland hosts riparian vegetation species responsive to the groundwater dynamic. NDVI can thus be used as a proxy to infer groundwater in the catchment. Therefore, effective water resources management of the floodplain should be implemented through conjunctive management of groundwater and surface water. |
|||||||||||
Investigation of Seawater Intrusion due to Group-Well- Pumping of a local coastal aquifer in Durban, South Africa. | Molla | Demlie | Durban, South Africa | 2023 | Eastern South Africa, Environmental Isotopes, group-well-pumping, Harbour Beds Formation, Hydrochemistry | ||||||
AbstractThe response of an alluvial and estuarine deposit aquifer, locally known as the Harbour Beds Formation, located in the coastal area of the Durban Metropolitan District to 48 hours of group well pumping is studied to understand its potential for groundwater supply and consequent seawater intrusion. Groundwater levels were monitored from the three pumped boreholes and piezometers. Similarly, EC, TDS and pH were monitored every hour from the boreholes and piezometers. Hydrochemical and water isotopes (2H and 18O) samples of groundwater were taken at 12, 18, 24, 36, 42 and 48 hours during pumping. The results indicate that the aquifer has a transmissivity, hydraulic conductivity and storativity of 48.97 m2/d, 1.7 m/day and 0.0032, respectively. The generally monitored EC, TDS, and pH have been fairly constant during the pumping period and didn’t show any seawater intrusion. Similarly, the hydrochemical data monitored for the three boreholes show general Na-CaHCO3-Cl-dominated groundwater throughout the pumping duration. However, uneven drawdown distribution and complex groundwater flow conditions indicate that the aquifer structure and hydraulic properties are heterogeneous. The water isotopes (2H and 18O) monitoring during the test pumping suggests spatial variability regarding water recharging the Harbour Beds aquifer. Though limited in area extent, the Harbour Beds Formation aquifer is a productive aquifer with acceptable water quality and can be a viable water source for domestic and industrial uses. However, continuous long-term monitoring of water quality and groundwater levels using data loggers is recommended to prevent induced seawater intrusion and contamination. |
|||||||||||
Distribution, Formation Conditions and Genesis of High-Quality Groundwater Containing Metasilicate in Zhaojue County, Southwest China | C | Zou | Southwest China | 2023 | Groundwater; H2 SiO3 ; distribution; formation condition; Zhaojue County; Southwest China | ||||||
AbstractThe drinking water health issues have been considered due to improved living standards in recent years. Finding and developing high-quality groundwater with high-level minerals has become key to improving human health. The hydrochemical test data of 66 springs in Zhaojue County were analyzed using various methods, and the spatial distributions of H2 SiO3 -rich groundwater, hydrogeochemical characteristics, formation conditions and genesis were revealed. The main results including: 1) the groundwater with H2 SiO3 (≥25mg / L) was identified as the low salinity and alkaline water, which distributed in the six areas with the basement rocks of basalt,with a distribution area of about 79 square kilometers. The H2 SiO3 concentration was generally 25.74~46.04 mg/L; the low mineralization characterized the H2 SiO3 -rich groundwater of study area while the main hydrochemical types of groundwater are HCO3 - Ca·Mg, HCO3 -Ca, and HCO3 -Na; the Pearson correlation coefficient between the content of H2 SiO3 in groundwater and the content of pH is relatively high, indicating that the level of H2 SiO3 in groundwater in the study area is significantly affected by the pH value of the solution; the H2 SiO3 -rich groundwater was influenced by the water-rock interactions, the distribution range and solubility of silicate minerals ,the development of surrounding rock fissures, and water conservation and recharge conditions in the county, among which the water-rock interactions play a critical role. The results can provide a basis for the development of mineral water industry and the construction of urban and rural high-quality water sources in Zhaojue County. |
|||||||||||
Evaluation of the impact of artificial recharge of groundwater by river replenishment in the North China Plain using a numerical model | Q | Hao | China | 2023 | artificial recharge, groundwater management, river water replenishment, the North China Plain | ||||||
AbstractSince 2018, the North China Plain has started a large-scale ecological water replenishment project for rivers and lakes, with 17.5 billion cubic meters total from the South–North Water Transfer Project and other water sources. It is a key question of how much water infiltration into aquifers will affect groundwater and how to characterize and evaluate this effect quantitatively. The groundwater numerical model of the Beijing-Tianjin- Hebei region as the main part of the North China Plain was established using a numerical simulation method, and the groundwater level variation under the replenishment condition was simulated and predicted. By comparing the two scenarios, the relative rise method of groundwater level was proposed to characterize the influence of river water infiltration on groundwater level, and the unstructured grid method was used to refine cells near the river to improve simulation accuracy. Simulation results show that the groundwater level around some rivers has risen significantly in the past four years, especially in the alluvial fan regions with better infiltration properties. Accordingly, at the Piedmont alluvial fan region, there is also a large influence range on groundwater level. The maximum influence distance is more than 10km (0.1m relative rise of groundwater level was taken as the influential boundary). According to the prediction, if the water replenishment project continues, the range of influence can continue to expand, but the expansion rate will slow down due to the reduction of the hydraulic gradient. |
|||||||||||
Electromagnetic measurements in the Netherlands using an All Terrain Vehicle to rapidly characterize groundwater salinity and clay distribution in 3D | J | Gunnink | Netherlands | 2023 | 3d-mapping, clay distribution, groundwater salinity | ||||||
AbstractElectromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure. |
|||||||||||
Researching Fracking in the Karoo: Summary of lessons learned | Fde | Lange | South Africa | 2023 | Challenges, Fracking, Independent, policy, Precautionary, Regulatory, Research, risks, scale, stakeholders | ||||||
AbstractResearch on Fracking in the Karoo basin yielded results that, if not considered “unexpected”, can be considered as “should have been foreseen”. Some aspects substantially impacting research on fracking are often overlooked when undertaking scientific research on an emotional topic such as fracking. This presentation aims to provide insights and recommendations based on the experiences and outcomes of current research on hydraulic fracturing or “fracking” in the Karoo basin of South Africa. Fracking has been a subject of significant research and debate over the past decade. Topics, each with its challenges, include 1) The scale of exploration/production extent (Site specifics), 2) Importance of robust and independent research, 3) Need for stakeholder engagement and participation, 4) The complexity of environmental risks and impacts, 5) The need for a precautionary approach, 6) Regulatory and policy challenges. Several methodologies can be relied upon to compare outcomes of different aspects of fracking research in the Karoo, such as 1) Comparative analysis, 2) Meta-analysis, 3) Stakeholder mapping and analysis and 4) Data visualisation. A combination of these methodologies can be used to compare outcomes of different aspects of fracking research in the Karoo and provide insights and recommendations for future decision-making and planning. Ultimately, the decision to allow Fracking should be based on a balanced assessment of potential risks and benefits, considering long-term impacts on the environment, economy, and communities. |
|||||||||||
Nitrate vulnerability assessment in the fast-growing African district of Abuja Federal Capital Territory (Nigeria) | M | Etuk | Abuja FCT, Nigeria | 2023 | DRASTIC-LU model, Groundwater Contamination, population growth | ||||||
AbstractIn the Federal Capital Territory of Abuja (Abuja FCT, Nigeria), a population growth of about 400% between 2000 and 2020 has been reported. This trend, coupled with the persisting urban sprawling, is likely to result in severe groundwater quality depletion and contamination, thus undermining one of the area’s main freshwater supplies for drinking purposes. In fact, groundwater in Nigeria and Abuja FCT provides over 70% of the drinking purposes. Results of a groundwater vulnerability assessment that compared land use data from 2000 and 2020 showed that the region had been affected by a dramatic change with an increase in urbanized (+5%) and agricultural (+27%) areas that caused nitrate concentrations to exceed the statutory limit for drinking purposes in more than 30% of the monitored wells in 2021 and 40% in 2022. Although fertilizers are generally considered the main source of nitrate contamination, results suggest a possible mixed (urban and agricultural) pollution origin and a legacy of previous nitrogen pollution sources. The comparison between the DRASTIC-LU map and nitrate concentrations shows that the highest values are found in urban/peri-urban areas, in both shallow and deep wells. This investigation is the first step of a comprehensive nitrate pollution assessment in the region, which will provide decision-makers with adequate information for urban planning given the expected population growth in the area |
|||||||||||
A combined stochastic-analytical method for the assessment of climate change impact on spring discharge | A | Kovacs | Hungary | 2023 | Spring hydrograph, analytical model, Climate change, stochastic mode | ||||||
AbstractThis study describes a novel methodology for predicting spring hydrographs based on Regional Climate Model (RCM) projections to evaluate climate change impact on karstic spring discharge. A combined stochastic-analytical modelling methodology was developed and demonstrated on the Bukovica karst spring catchment at the Durmitor National Park, Montenegro. As a first step, climate model projections of the EURO-CORDEX ensemble were selected, and bias correction was applied based on historical climate data. The regression function between rainfall and peak discharge was established using historical data. The baseflow recession was described using a double-component exponential model, where hydrograph decomposition and parameter fitting were performed on the Master Recession Curve. Rainfall time series from two selected RCM scenarios were applied to predict future spring discharge time series. Bias correction of simulated hydrographs was performed, and bias-corrected combined stochastic-analytical models were applied to predict spring hydrographs based on RCM simulated rainfall data. Simulated climate scenarios predict increasing peak discharges and decreasing baseflow discharges throughout the 21st century. Model results suggest that climate change will likely exaggerate the extremities regarding climate parameters and spring discharge by the end of the century. The annual number of drought days shows a large variation over time. Extremely dry years are periodic, with a frequency between 5-7 years. The number of drought days seems to increase over time during these extreme years. The study confirmed that the applied methodology can successfully be applied for spring discharge prediction |
|||||||||||
Use of krypton-81 to constrain the reliability of carbon-14 in estimating groundwater ages | S | Lu | China | 2023 | groundwater dating, krypton-81 isotope, radiocarbon | ||||||
AbstractAdvances in groundwater age dating provide key information for groundwater recharge history and rates, which is of great significance for groundwater sustainable development and management. By far the, radioisotope 14C is the most frequently used in routine investigations. However, groundwater age can be misinterpreted given its dating range of up to 40 ka and its chemically active in nature. In comparison, 81Kr is less frequently used but chemically inert with a dating range of up to 1,300 ka, which overcomes the limit of 14C. Although it is not as precise as 14C when the groundwater age is younger than 40 ka, it may be helpful to determine the reliability of 14C dating results. In this study, we collected eight field samples from coastal aquifers in Nantong, China and analyzed them for 81Kr, 85Kr, and 14C. The 14C results show that all groundwater ages range from 2,400 to 35,300 years, with different correction methods yielding uncertainties of 1,500 to 3,300 years. Four of the 81Kr ages provided upper bounds, while three yielded groundwater ages which are consistent with the 14C dating results within measurement uncertainties. Interestingly, one 81Kr result gave an age of 189+11 - 12ka, whereas the corresponding corrected 14C age was less than 29,200 years. The great difference may indicate modern contamination in the sampling process or mixing between young and old groundwaters. Further investigation is needed to shed more lights in this case. Moreover, it shows the benefits of introducing 81Kr in routine hydrogeological investigations and the groundwater studies. |
|||||||||||
Electrical Hydrogeology of Managed Aquifer Recharge from Meter to Kilometer Scales | T | Halihan | USA | 2023 | Byrds Mill Spring, carbonate, electrical resistivity imaging, enhanced aquifer recharge, Karst spring | ||||||
AbstractWhile traditional well and spring sampling are limited to the integration of point data and the interpolation of the data across large scales. Electrical measurements of aquifers can be extended across a range of scales and integrated to provide an improved quantitative understanding of groundwater systems. At a site in Oklahoma, USA, a karst-managed aquifer recharge research site is being used to test electrical techniques for aquifer characterization on the kilometer scale and monitoring the aquifer on the meter scale. At the kilometer scale, the data illustrate fault locations, siphons in flow paths, and previously uncharacterized conduits. At the metre scale, the monitoring data illustrate porosity structure, flow paths, and potential biological changes in the subsurface. The results indicate that electrical approaches can significantly change aquifer conceptual models and provide targeted sampling locations in karstic bedrock aquifers. |
|||||||||||
The role of groundwater in urban resilience | A | Healy | Wales | 2023 | Groundwater, Governance, household, Resilience, urban | ||||||
AbstractThe potential role of groundwater in supporting the resilience of human societies is garnering increased attention in the context of climate change. Much of this attention focuses on the resilience of the groundwater resource itself. Less attention has been given to the way that groundwater is used by society and how this may influence human-centred resilience outcomes, particularly in urban settings. In this paper, I explore how questions of scale are fundamental to the role of groundwater in the resilience of urban areas, from the scale of individual households to more regional and catchment-based notions of scale. It is these variations in the geographies of urban groundwater exploitation that provide for the challenges of groundwater governance. Drawing on the practices revealed across 5 diverse cities in sub-Saharan Africa; the paper highlights the variety of ways that groundwater promotes the resilience of urban areas to water stress. The paper finds that groundwater can accommodate a prevalence of ‘self-supply’ and market-based models as urban populations seek to counter failings in public supply provision. Whilst these actions promote the resilience of the urban setting in the short to medium term, they raise important questions for the longer-term sustainability of the resource. The paper considers the implications of these questions for the future governance of resilient groundwater resources and the role of groundwater as part of a wider strategy for urban resilience. |
|||||||||||
Groundwater porosities and effective porosities: definitions, physical relevance, and scale issues | A | Dassargues | Belgium | 2023 | REV, drainage effective porosity, effective porosity, porosity, scale issue, transport effective Porosity | ||||||
AbstractPorosity describes the ratio between the volume of pores, cracks, and fissures and the total volume of a studied geological medium. This notion implies a volume averaging of the medium characteristics using the concept of Representative Elementary Volume (REV). Small volumes can contain only pores, while larger volumes typically contain both pores and fissures. Porosity can be highly scale-dependent, and different porosity values can be measured for the same geological formation. Furthermore, groundwater in the pores and cracks can be partly immobile or mobile. So, the porosity actively involved in groundwater flow can be discussed. A ‘mobile water porosity’ can be defined, but this remains highly dependent on the existing pressure conditions in the geological medium. In unconfined conditions, the term ‘effective porosity’ usually corresponds to the drainage porosity corresponding to the specific yield or storage coefficient. When dealing with solute transport and remediation of contaminated sites, another ‘effective porosity’ is needed to describe the advection velocity of the contaminant. This ‘mobile water porosity’ acting in solute transport processes typically takes lower values than drainage’s ‘effective porosity’. Scale issues must also be expected, as shown by field and lab tracer tests. The term ‘Darcy velocity’ will be banished herein because it induces much confusion. For clarity, we propose to distinguish ‘drainage effective porosity’ and ‘transport effective porosity’. The physical meaning of both terms is discussed, and examples of supporting observations are presented for illustration and discussion. |
|||||||||||
Winter irrigation as climate change adaptation strategy in northern Italy | L | Albert | Italy | 2023 | Adaptation strategies, Climate change, Integrated Water Resources Management, Irrigation, Managed aquifer recharge, flow modelling | ||||||
AbstractIn 2021-23, northern Italy suffered a severe drought due to the absence of rainfall, which strongly affected the pre-alpine lake levels, affecting energy production, agriculture and sustainable river flows. This led to harsh consequences on agriculture, which in the Lombardy region almost completely relied on flooding irrigation methods using water from lakes through Ticino and Adda rivers. As part of the INTERREG Central- Europe project “MAURICE”, which focuses on Integrated Water Resources Management, the winter irrigation practice is proposed as a climate change adaptation strategy. The main project idea is to store surface water in aquifers in periods of exceedance (autumn/winter) using the very dense channels irrigation network as a “natural” infiltration system. The underground storage would increase the groundwater levels, bringing two main advantages during the spring/summer seasons: a good flow rate at plain springs and, in periods of water scarcity, the possibility to extract groundwater for agricultural purposes. Relying on the slow groundwater velocity (about 350 m/y), this practice keeps water stored in the subsoil just below the irrigated areas where the water is needed. In the early project stage, a basin-scale numerical model is presented to test the potentiality of such practice. A specified water volume was distributed on the crop fields during the winter period, and the effects of such managed recharge were evaluated, also considering the possible problems deriving from the groundwater levels increase. The model demonstrates the adaptation measure feasibility, which will be tested at a field scale in a Pilot Area. |
|||||||||||
Formation of the groundwater chemical composition in the Quaternary aquifer of the coastal valley (North Sinai, Egypt) | N | Vinograd | Egypt | 2023 | Quaternary sediments, Sinai Peninsula, fresh water, Groundwater, groundwater–rock system, mineral water, physicochemical equilibrium | ||||||
AbstractThe research aims to reveal possible ways of formation of the chemical composition of mineral and fresh groundwater in Quaternary sediments of the coastal plain of Northern Sinai. Statistical assessment of the distribution of various hydrochemical indicators of mineral and fresh groundwater has been carried out according to the following data samples: 1) the general population for all Quaternary deposits (164 wells); 2) the central zone (74 wells); the eastern zone (25 wells); the western zone (65 wells). The following variables were assessed: total dissolved solids (TDS) (in ppm), concentrations of major components (in epm and % epm), pH value and the depth of the sampled well (ds) (in meters). The physicochemical equilibria between the groundwater and rock–forming carbonate and sulfate minerals were calculated using the PHREEQC software. Saturation indices (SI) for groundwater of three zones in relation to various rock-forming minerals were analyzed. Correlation relationships were obtained for TDS, major components and some genetic coefficients ((Requ=(Na++K+)/ (Ca2++Mg2+); Na+/Cl-; SO4 2-/Cl-; Ca2+/SO4 2-). It was concluded that the groundwater chemical composition is defined by infiltration recharge and/or intrusion of Mediterranean seawater. Most likely, during short-term flood periods, the infiltration into aquifers significantly exceeds the evaporation. Despite the relatively high evaporation rate, the degree of groundwater metamorphization is below the saturation level in relation to sulfates and carbonates. The research is of great practical importance for assessing freshwater resources to provide potable water supply |
|||||||||||
ome Trans-disciplinary Legal Options to Ensure the Protection of South Africa’s Utilisable Groundwater Resources | Carin | Bosman | South Africa | 2023 | Groundwater governance; water law; protection; land use activities; hydrogeology; aquifer protection zones | ||||||
AbstractSouth Africa faces serious water scarcity challenges not only because it is a semi-arid country but also due to climate change. One of the most significant effects of climate change is an increase in temperature, which inevitably increases evaporation. Increased evaporation directly reduces the availability of surface water resources. Groundwater is less susceptible than surface water resources to evaporation and thus offers resilience against the impacts of climate change. Many South African cities, communities, and farmers depend on groundwater for domestic or other socio-economic purposes. This implies that groundwater resources which are currently or potentially utilisable should be identified, and suitable legal measures should be implemented to protect these resources from potential risks of harm or damage posed by anthropogenic activity. First, This article evaluates the effectiveness of the country’s existing regulatory framework to effectively protect South Africa’s groundwater resources and finds that the framework can be improved significantly. Secondly, it explores regulatory opportunities within the existing legal framework to strengthen South Africa’s groundwater governance regime, including using land use planning instruments to facilitate the implementation of groundwater protection zones |
|||||||||||
Benefits and costs of managed aquifer recharge: An integrated water governance solution | A | Ross | Australia | 2023 | Managed aquifer recharge; aquifer storage; water infrastructure; cost-benefit analysis; levelized cost; benefit-cost ratio | ||||||
AbstractManaged Aquifer Recharge (MAR) provides an integrated water governance solution that improves water security for communities and farmers by storing water in aquifers and managing groundwater extractions to ensure water supplies are available during droughts. Quantitative analysis of levelised costs and benefit-cost ratios (BCRs) of 21 MAR schemes from 15 countries and qualitative assessment of additional social and environmental benefits demonstrates the benefits of MAR compared to water supply alternatives. Cost-benefit analysis provides a systematic method for comparing alternative water infrastructure options. Levelised cost is a widely accepted method of comparing MAR with alternative water infrastructure solutions when market valuations of water are unavailable. The benefits of MAR can be estimated by the cost of the cheapest alternative source of supply or the production value using water recovered from aquifer storage. MAR schemes recharging aquifers with natural water using infiltration basins or riverbank filtration are relatively cheap with high BCRs. Schemes using recycled water and/or requiring wells with substantial drilling infrastructure and or water treatment are more expensive while offering positive BCRs. Most MAR schemes have positive or neutral effects on aquifer conditions, water levels, water quality, and environmental flows. Energy requirements are competitive with alternative sources of supply. This analysis demonstrates strong returns to investment in the reported MAR schemes. MAR provides valuable social and environmental benefits and contributes to sustaining groundwater resources where extraction is managed. |
|||||||||||
Planning for increased water security and preventing salinisation in coastal areas of the Netherlands: A study on the suitability for managed aquifer recharge and extraction of brackish water, including quantification of potential extractable volumes | I | de Groot-Wallast | The Netherlands | 2023 | Aquifer Storage and Recovery, Managed aquifer recharge, aquifer salinisation, brackish water extraction, suitability maps, Water supply | ||||||
AbstractYear-round water security is at risk as socio-economic developments lead to increasing water demands, while climate change affects water availability through higher-intensity rainfall and prolonged periods of drought. Coastal zones and deltas with often high population densities experience additional risks of salinisation and land subsidence. These developments ask for creative solutions to secure sustainable and year-round access to fresh water. The subsurface provides storage capacity to actively infiltrate freshwater, bridging the time-gap between demand and supply. Combining infiltration with extraction and desalination of brackish water prevents the salinisation of aquifers whilst providing an additional water source. We call this COASTAR. A Dutch research consortium with partners like water companies and water boards develops COASTAR. Among COASTAR results are suitability maps for Aquifer Storage and Recovery (ASR) and Brackish Water Extraction (BWE) in the coastal zone of the Netherlands. The maps are based on geohydrological factors. A quick-scan analysis was also performed to quantify the nation-wide potential extractable ASR and BWE volumes. COASTAR develops case study models and local scale pilots on ASR and BWE. For two water supply regions, an analysis has been made to geographically match development in water demand with suitability for ASR and BWE as a step in the search for strategic locations to develop ASR and BWE. The suitability maps provide guidance for initiatives’ development and practical experiences from pilot projects; this provides important information for further upscaling of COASTAR approaches. |
|||||||||||
A Review of potential and actual groundwater recharge: Insights and implications to groundwater use | N | Tuswa | Bellville, South Africa | 2023 | Groundwater allocation, capture principle, semi-arid region, water resource management | ||||||
AbstractRecharge is one of the most significant parameters in determining the sustainability volume of groundwater that can be abstracted from an aquifer system. This paper provides an updated overview and understanding of potential and actual groundwater recharge and its implications for informing decision-makers on efficiently managing groundwater resources. The paper argues that the issue of potential and actual recharge has not been adequately addressed in many groundwater recharge studies, and if not properly addressed, this may lead to erroneous interpretation and poor implementation of groundwater resource allocations. Groundwater recharge has been estimated using various methods, revised and improved over the last decade. However, despite numerous recharge methods, many studies still fail to distinguish that some assess potential recharge while others estimate actual recharge. The application of multiple recharge methods usually provides a wide range of recharge rates, which should be interpreted in relation to the type of recharge they represent; as a result, the wide range of recharge findings from different methods does not necessarily imply that any of them are erroneous. A precise distinction should, therefore, be made between the potential amount of water available for recharge from the vadose zone and the actual recharge reaching the water table. This study cautions groundwater practitioners against using “potential recharge values” to allocate groundwater resources to users. The results of this paper may be useful in developing sustainable groundwater resource management plans for water managers. |
|||||||||||
Assessment of groundwater potential of the Kalahari aquifers in Kavango East and West regions, Namibia | A | David | Namibia | 2023 | groundwater potential, Kalahari aquifers, recharge, water-balance | ||||||
AbstractThe Kavango West and East regions are situated in a semi-arid area northeast of Namibia and bounded by the perennial Okavango River on the northern border. Groundwater in the area is the main source of water supply for the inhabitants living further from the river. In addition, most bulk water users along the river have boreholes for their water supply. With a semi-arid climate, drought in the regions is common and inflicts devastating effects on local communities. More drought relief boreholes are being drilled to sustain communities, increasing the dependency of the inhabitants on groundwater. The complexity of the behaviour and nature of the groundwater in the regions is poorly understood, and there are no strategies to manage these aquifers properly. As a result, an attempt was made to better understand the groundwater potential by examining several hydrogeological factors involved. A basic water-balance approach was used in determining the groundwater potential of the middle and lower Kalahari aquifers. The total resource potential for the entire region is estimated at 144 447.16 x 106 m3 /a, demonstrating great resource potential with significant storage space. The greatest potential is shown in the middle Kalahari aquifers, comprising about 94% of the total resource. Groundwater recharge, as one of the hydrogeological factors, was determined using the chloride mass balance method, giving an average of 6.03 mm/a for the entire study area. If utilized sustainably, the Kalahari aquifers can sustain most communities within the two regions, especially those further from the Okavango River. |
|||||||||||
Sampling procedures for PFAS and pharmaceuticals –Recommendations vs. reality | A | Kuczyńska | Poland | 2023 | emerging contaminants, groundwater monitoring, sampling protocols | ||||||
AbstractPFAS and pharmaceuticals in groundwater are two of many synthetic compounds currently under the attention of many researchers and environmental administration in Europe, especially in light of the revision of the EU Groundwater Directive 2006/118/EU. The two types of substances were first included in the voluntary groundwater watch list and were first formally regulated at the EU scale. This regulation implies that they will be obligatory to be monitored within national monitoring programmes for groundwater body status assessment procedures across the EU. While there is no doubt about the need to regulate the presence of these substances in groundwater, sampling procedures and QC/QA protocols may be challenging to implement as no official guidelines exist. Although scientific literature allows us to define protocols usually based on precautionary principle, these may be too difficult and expensive to implement at the national scale monitoring. This article describes a work that the Polish Geological Institute – National Research Institute undertook to define an optimal sampling process for PFAS and pharmaceuticals in groundwater. Experimentally tested factors included cleaning pumps between sampling sites, the need for using protective suits during sampling and the influence of ambient air on sample quality. Results showed that sampling protocols for PFAS and pharmaceuticals do not need to be modified concerning current protocols as these seem to be sufficient to protect groundwater samples from unintentional cross-contamination. |
|||||||||||
Groundwater-dependent ecosystem dynamics in transboundary aquifer settings - a case study in the Tuli-Karoo aquifer | Kwazikwakhe | Majola | South Africa | 2023 | Groundwater-Dependent Ecosystem, Interactions, Transboundary aquifer | ||||||
AbstractKnowledge of the nature and extent of groundwater-dependent ecosystems (GDE) at an aquifer scale enables incorporating ecological water requirements in integrated groundwater resource management activities, including transboundary aquifer cases (TBA). This way, sustainable groundwater management and functional ecosystem services can be achieved. Therefore, understanding groundwater- ecosystems-surface water interactions is crucial for assessing resources’ resilience or susceptibility towards certain impacts. Unfortunately, this subject is widely under-researched with fragmented information, especially in southern Africa. This study was thus initiated to understand groundwater processes controlling the maintenance of Tuli-Karoo TBA (Botswana, South Africa, Zimbabwe) GDEs towards developing a model that can be utilised in impact assessments, especially in climate change. The employed approach included stable isotope analysis (mainly 2 H and 18O) for groundwater, streams, springs, rainwater, vegetation, and soil; spatial imagery and GIS classification (incl. NDVI, NDRE, NDWI); and plant moisture stress techniques. Identified GDEs in the study area (characterized by intergranular alluvium aquifer underlain by the Karoo sandstone of intergranular and fractured secondary aquifer type) are riparian vegetation, floodplain and depression wetlands, and springs. Precipitation recharged alluvium aquifer’s contribution to Limpopo River baseflow is negligible as the discharge is mainly through springs and evapotranspiration. Monitoring data scarcity and skewed availability among sharing countries hamper research and its output applicability to TBA’s entirety. Therefore, data generation, exchange, and joint databases development are crucial for sustainable comanagement of groundwater and supported ecosystems and science-based decision-making. |
|||||||||||
Alternative approaches for integrated groundwater management in the rural basins of central Bolivia | I | Rodriguez-Levy | Bolivia | 2023 | Bolivia, socio-hydrogeology, Geophysics, groundwater recharge, soil water balance | ||||||
AbstractDue to technical, social, and economic limitations, integrated groundwater management presents a significant challenge in developing countries. The significance of this issue becomes even more pronounced in groundwater management, as this resource is often overlooked and undervalued by decision-makers due to its status as a “hidden resource,” despite the fact that it provides multiple ecosystem services. This study aims to establish the technical hydrogeological foundation in rural basins of central Bolivia through alternative, simplified, and cost-effective methods and tools. The study includes applying geophysical techniques, such as Electrical Resistivity Tomography, to determine the conceptual hydrogeological model of a micro-basin. In addition, a soil water balance approach was applied, characterizing 24 biophysical variables to identify groundwater recharge zones, while global circulation models provided a substitute for unreliable meteorological data. Furthermore, a participatory model was developed to identify recharge areas in upper basin areas within the framework of developing a municipal policy for their protection. The participatory model included local knowledge in all stages of methodology development, considering the characteristics of the local plant communities and the spatial distribution of local rainfall. The research findings have already contributed to resolving socio-environmental conflicts in Bolivia and establishing a foundation for effective water governance by empowering local rural communities. This study has demonstrated the feasibility of using alternative, simplified, and low-cost methods and tools to establish the technical hydrogeological basis, which can inform public policies to promote sustainable groundwater management in developing countries. |
|||||||||||
Risks related to groundwater resources in the Murray-Darling Basin, Australia | A | Ross | Australia | 2023 | Groundwater, Murray-Darling Basin Plan, Ecosystems, implementation, policies, research priorities, risks, surface water | ||||||
AbstractGroundwater governance and risk management in the Murray-Darling Basin in Australia (MDB) are being challenged by the increasing demand for water and the growing scarcity and variability of water supply owing to climate change. Over the past 20 years, consideration of risk related to groundwater in the MDB has evolved from concerns about the impact of groundwater extraction on surface water resources to an integrated assessment of risks to connected water resources and ecosystems. The Basin Plan includes a comprehensive framework for assessing risks to Basin water resources and ecosystems, but further scientific and policy developments are required to implement the plan. Consistent definition and improved assessment of groundwater-surface water connectivity are required, together with longer planning timeframes. Multi-year planning rules and policies must be developed to exploit opportunities for integrated management of groundwater and surface water resources and storage to manage droughts and floods. Risks to groundwater quality and groundwater-dependent ecosystems must be adequately assessed and monitored to avoid adverse impacts on communities and long-term loss of ecosystem services. Further improvements can be made in assessing cumulative risks from coal seam gas and coal mining. Additional research can be targeted towards knowledge gaps and uncertainties that pose the greatest risk to connected groundwater and surface water resources and ecosystem viability. Most importantly, further training and capacity building in water management agencies is critical to enable effective and transparent monitoring and management of Basin water resources. |
|||||||||||
Geophysics-estimated groundwater levels to assess the accuracy of a numerical flow model | Y | Lévesque | Canada | 2023 | Eastern Canada, aquifer properties, geophysical methods, groundwater monitoring, numerical modelling, regional piezometry | ||||||
AbstractTwo numerical simulations using Feflow® software were conducted to demonstrate the utility of geophysical data to accurately determine groundwater levels and provide additional data to the groundwater modelling community to improve the model’s accuracy. One simulation is based on regional piezometric data, and the other uses geophysical data acquired through transient electromagnetic (TEM), electrical resistivity (ERT), and ground-penetrating radar (GPR) surveys. After both numerical analyses, the root mean square errors (RMS) obtained from the piezometric data and the multiple geophysical techniques to confirm the correlation between observed and simulated water levels were similar at 3.81 m and 2.76 m, respectively. Through a discrete modelling approach, this study shows that groundwater levels estimated using geophysical tools and methods and those determined by direct observation are comparable. In addition, before the 3D numerical flow model, a 3D geological model was built to fully represent this highly complex, heterogeneous, and anisotropic hydrological environment of the Saint-Narcisse moraine glacial deposits in eastern Mauricie, Québec. This stratigraphic reconstruction with Leapfrog software was necessary to provide a more detailed and realistic representation of this complex aquifer system. This study illustrates how geophysical data can complement direct observations to provide additional hydraulic information to hydrologic modellers. Geophysical surveys provide an extensive set of soft data that can be leveraged to improve groundwater flow models and determine water-table heights, particularly in areas characterized by limited direct piezometric information. |
|||||||||||
Securing Water Supplies – Participatory Groundwater Monitoring and Management in Botswana and Uganda | P | Kenabatho | Botswana, Uganda | 2023 | Livelihoods and Pollution, Participatory groundwater monitoring | ||||||
AbstractGroundwater resources in Africa face increasing threats of over-exploitation and pollution due to urbanization, agricultural and mining activities, yet monitoring remains challenging. Conventional approaches to monitoring groundwater at the exclusion of communities have not been successful. To overcome this, it is important to fully engage and train local communities in monitoring Groundwater Levels (GWLs), Rainfall and Water Quality (RWQ), which are important for understanding groundwater dynamics in wellfields. In this way, villagers can better understand groundwater issues and convey this information to others to cooperatively manage groundwater. A pilot program to monitor GWLs and RWQ by locals was initiated in two villages each in Botswana and Uganda to learn about its effectiveness. Through continuous stakeholder engagement, the local communities in the two case studies have been facilitated, trained and supported in monitoring groundwater and using the information collected to understand groundwater trends and their sustainability. Preliminary results indicate improvement in understanding the importance of groundwater monitoring by the communities and the implications on groundwater sustainability for improved livelihoods. This has become useful to one of the communities engaged in a village-level irrigation project which depends on groundwater resources. This project builds on a successful village-level participatory approach developed in the MARVI project (www.marvi.org.in ). It seeks to contribute to the United Nation’s 2022 call on “Groundwater: making the invisible visible” to highlight the importance of better monitoring and managing this vital resource. |
|||||||||||
Combined Use of Environmental and Artificial Tracers to Characterise the Vadose Zone | Yazeed | van Wyk | South Africa | 2023 | vadose zone, contaminant transport processes, environmental and artificial tracers | ||||||
AbstractWater and contaminant transport processes in the vadose zone through preferential flow paths can be understood using environmental and artificial tracer methods. Further improvement in tracer techniques can be achieved by applying numerical modelling techniques of both water and solute transport, accounting for additional information on water movement and the matric potential of the vadose zone. The vadose zone is often ignored as a key component linking the land surface to the groundwater table, even though it acts as a filter that removes or stores potential contaminants. The water transit time between the surface and the groundwater table is frequently investigated using artificial tracers that normally show conservative behaviour. The main advantage is that the input function can be clearly defined, even though artificial tracers can generally only be applied over a relatively small area. The research is expected to provide insight into the selection and use of environmental and artificial tracers as markers for detecting and understanding the contaminant transport processes and pathways of contaminants in altered vadose zone environments (open-pit quarry). The impact is improved characterisation of the pathways, transport and migration processes of contaminants, and residence times, leading to the development of appropriate conceptual and numerical models of vadose zone flow processes that consider various contaminant sources. The principal aim is, therefore, to systematically examine the transport mechanisms and associated pathways of different environmental and artificial tracers in an open-pit quarry. |
|||||||||||
Assessment of Water Supply Security and Sustainability of Managed Aquifer Recharge in Botswana | A | Lindhe | Botswana | 2023 | Managed aquifer recharge, multi-criteria decision analysis, sustainability assessment, water supply security model | ||||||
AbstractAn approach for evaluating the sustainability of managed aquifer recharge (MAR) has been developed and applied in Botswana. Numerical groundwater modelling, water supply security modelling (SWWM) and multi-criteria decision analysis (MCDA) are combined to thoroughly assess hydrogeological conditions, supply and demand over time and identify the most sustainable options. Botswana is experiencing water stress due to natural conditions, climate change and increasing water demand. MAR has been identified as a potential solution to increase water supply security, and the Palla Road aquifer, located 150 km northeast of the capital, Gaborone, has been identified as a potential site. To evaluate the potential of MAR and if it is suitable for improving water supply security, three full-scale MAR scenarios were evaluated based on their technical, economic, social and environmental performance relative to a scenario without MAR. The numerical groundwater model and the WSSM were used iteratively to provide necessary input data. The WSSM is a probabilistic and dynamic water balance model used to simulate the magnitude and probability of water shortages based on source water availability, dynamic storage in dams and aquifers, reliability of infrastructure components, and water demand. The modelling results were used as input to the MCDA to determine the sustainability of alternative MAR scenarios. The results provide useful decision support and show that MAR can increase water supply security. For the Palla Road aquifer, storage and recovery with a capacity of 40 000 m3 /d is the most sustainable option. |
|||||||||||
Groundwater flow paths dictate terrestrial carbon inputs into a groundwater-dominated stream | Y | Xie | China | 2023 | Groundwater discharge; groundwater flowpaths; dissolved carbon; environmental tracers | ||||||
AbstractGroundwater discharge is crucial for transporting terrestrial carbon into streams and rivers, but the effects of groundwater flow paths on terrestrial carbon inputs are poorly understood. Here, we investigated environmental tracers (EC, Cl-, 2H, 18O, 220Rn, and 222Rn) and carbon concentrations in riparian groundwater, streambed groundwater, and stream water over six groundwater-stream monitoring sites. Significantly high 220Rn and 222Rn activities in the stream and endmember analysis results of the environmental tracers reveal that vertical groundwater discharge from the streambed (VGD) and lateral groundwater discharge from the riparian zone (LGD) is of equal importance for the stream. We quantified VGD by modelling the detailed 222Rn and Cl- profiles at the streambed and then combined differential flow gauging to estimate LGD. VGD (2.9 ± 1.4 m2 d-1) prevailed in relatively wide and shallow channels, while LGD (2.6 ± 2.6 m2 d-1) dominated narrow and deep channels. Carbon measurements indicate that LGD had the highest CO2, CH4, DIC, and DOC, while VGD had relatively higher CO2 but lower CH4, DIC, and DOC than stream water. Our findings suggest that LGD is the primary carbon source for the stream, while VGD mainly dilutes the stream (except CO2). Finally, we observed that groundwater discharge and temperature overrode metabolism in controlling stream carbon dynamics, implying the importance of groundwater discharge for understanding stream carbon cycling. Overall, this study identified the impacts of groundwater flow paths on carbon exchanges between terrestrial and stream ecosystems. |
|||||||||||
Using derivative plot analysis for diagnosing boundary conditions and flow regimes, Heuningnes, Cape Agulhas, South Africa | A | Xaza | South Africa | 2023 | Flow regimes, boundary conditions, flow dynamics | ||||||
AbstractThis study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment. |
|||||||||||
How groundwater temperature is affected by climate change: a systematic review and meta-analysis | E | Egidio | Italy | 2023 | Climate change, Groundwater, groundwater temperature, review, temperature | ||||||
AbstractGroundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers. However, only 45 studies were considered for this review after a screening concerning eliminating duplicate papers, a first selection based on title and abstract, and an analysis of topic compatibility through examination of the full texts. The analysed scientific production from all five continents covers 1995-2023 and was published in 29 journals. As a result of the review, GWT variations due to CC emerged as of global interest and have attracted attention, especially over the past two decades, with a multidisciplinary approach. A general increase in GWTs is noted as a primary effect of CC (especially in urban areas); furthermore, the implications of the temperature increase for contaminants and groundwater-dependent ecosystems were analysed, and various industrial applications for this increase (e.g. geothermy) are evaluated. It’s evident from the review that GWT is vulnerable to CC, and the consequences can be serious and worthy of further investigation. |
|||||||||||
Celebrating hydro-geoheritage – the Table Mountain Dams Trail and Hermanus Water Walk (Western Cape, South Africa) | D | Blake | South Africa | 2023 | Hydro-geoheritage, Water supply, Table Mountain Group aquifers, Cape Town, Hermanus, Social Hydrogeology | ||||||
AbstractHydrogeology and hydrology are commonly overlooked aspects of geoheritage, despite strong geological links. Water in all its forms has played a critical role in the development of Earth, and the shaping of its landforms (in addition to sustaining all life on the planet), and access to water has been the core reason for the establishment of numerous human settlements. The evolution of a settlement’s water supply tracks its development history across the Holocene, providing an excellent tool for teaching the public about human interactions with the Earth and our shared future going forward in a changing climate. To this extent, two self-guided trails (with associated guidebooks and mobile apps) have been developed in areas of the Western Cape province of South Africa with rich water supply histories and hydro-geoheritage – the Table Mountain Dams Trail in Cape Town and the Hermanus Water Walk in the Overberg region. The surface and groundwater supply systems that both trails cover have an inherently unique link with the Ordovician-Devonian Table Mountain Group fractured aquifer systems (including the complex tectonic and geomorphic evolutionary history that has led to the present landscapes), which most residents and international visitors are generally unaware of (despite being major tourist regions in South Africa). It is envisioned that through these guides/trails, the reader/walker will gain a better understanding of/appreciation for the value of water, a greater feeling of ownership for the natural history of the city/region they reside in, and will strive to preserve associated hydro-geoheritage for future generations. |
|||||||||||
Improved hydrogeological conceptual model through additional ERT profiles in medial-distal facies of andesitic volcanic area: Case study of Pandaan, East Java, Indonesia | A | Fadillah | Indonesia | 2023 | Andesitic stratovolcanoes, Electrical Resistivity Tomography, Groundwater, Hydrogeological, conceptual model, sustainability | ||||||
AbstractIn Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system. |
|||||||||||
Application of Nanofiltration Membrane for Removal of VOCs and Heavy Metals in Groundwater, Ratchaburi, Thailand | C | Chamathong | Ratchaburi, Thailand | 2023 | Heavy metals, Nanofiltration membrane, VOCs | ||||||
Abstracthe Namphu and Rangbua subdistricts in Ratchaburi province, in western Thailand, are affected by groundwater contamination. According to site characterization results, the aquifer has been contaminated with volatile organic compounds and heavy metals since 2014. Membrane filtration technology is an alternative method for treating groundwater to produce safe drinking water for household use. Nanofiltration membrane is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). This study aimed to determine the hydrochemistry of contaminated groundwater and examine the efficiency of nanofiltration membranes for removing pollutants in groundwater and the potential implementation of the membrane. The membrane module used in this study is cylindrical in shape of 101.6 cm long and 6.4 cm in diameter, and the membrane surface charge is negative with monovalent rejection (NaCl) of 85-95%. The filtration experiments were conducted at a pressure of 0.4-0.6 MPa, which yielded flow rates of approximately 2 L/min. To examine the nanofiltration membrane efficiency, groundwater samples were extracted from four monitoring wells and were used as feed water. According to laboratory results, the nanofiltration maximum removal efficiencies for 1,2-dichloroethylene, vinyl chloride, benzene, nickel, and manganese were 97, 99, 98, 99, and 99%, respectively. However, the treatment efficiency depends on several factors, including pretreatment requirements, influent water quality and the lifespan of the membrane. Further research should be conducted to determine the maximum concentration of VOCs and heavy metals in the feed water before applying this treatment method to a large scale. |
|||||||||||
Developing and testing a Groundwater Mapping methodology to increase drilling success rates for sustainable drinking water boreholes in African Arid and Semi-Arid Lands – the case study of Cunene Province, Angola | D | Benedicto van Dalen | Angola | 2023 | Analytic Hierarchy Process, WASH program, groundwater mapping, remote sensing | ||||||
AbstractIn recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation. |
|||||||||||
Making the Invisible Visible: Do Aquifers Have Agency? | A | Healy | Wales | 2023 | agency, Groundwater, more-than-human, social, socio-hydrogeology | ||||||
AbstractIn the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science. The role of groundwater in complex adaptive socio-ecological systems at different scales is increasingly well-documented. Access to groundwater resources positively influences societal welfare and economic development opportunities, particularly in areas where surface waters are scarce. The potential adverse effects of human activities on the quantity or quality of groundwaters are also widely reported. Adopting a ‘properties’ approach, traditional social science perspectives typically describe aquifers as structuring the agency of human actors. To what extent might aquifers also have agency, exhibited in their capacity to act and exert power? Drawing on insights from 5 cities across sub-Saharan Africa, we argue for the agency of aquifers in light of their capacity to evoke change and response in human societies. In doing so, we draw on the concept of the more-than-human to argue for a more conscious consideration of the interaction between the human and non-human water worlds whilst acknowledging the critical role played by researchers in shaping these interactions. |