Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 51 - 100 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

Water resources, including groundwater, are under threat globally from abstraction and pollution, making studies of water flows ever more urgent. South Africa has a growing population, a relatively dry climate and abundant mining activity, all of which increase the importance of water management. Mooiplaas Dolomite Quarry, southeast of Pretoria, has been mining metallurgical grade dolomite since 1969 and is located in the productive karst aquifers of the Malmani Subgroup, Transvaal Supergroup. The site was investigated by sampling precipitation, surface water, groundwater and mine water for hydrochemical and stable isotope analysis from 2011 to 2017, totalling over 400 samples. Nitrate levels in groundwater and mine water were marginally above drinking water limits from explosives residues, and ammonia in the nearby Hennops River was unacceptably high due to municipal sewage outfalls, but otherwise, water quality was very good. Alkalinity from rock weathering, aided by the crushing of dolomite, was the main control on water chemistry. Combined analysis of dissolved matter (TDS, nitrate, Mg, etc.) suggested that the dewatering of the mine and resultant recharge from slime dams caused an aerated zone of groundwater, which mixed with regional groundwater flowing beneath the site. Stable isotopes, with an evaporated signature from mine open water bodies, also showed how mine operations cause recharge to groundwater and subsequent seepage back into the pit lakes. The mine appears not to contaminate the regional groundwater. However, mine designs should avoid situations where process water flows via groundwater back into pits, causing excessive dewatering costs.

Abstract

Contamination of fresh groundwater aquifers by leakage of saline water (brine) from wells may result from various activities, such as salt mining, wastewater or concentrate injection and geothermal heat production. Here, the brine transport and consequences for groundwater monitoring have been explored for a wide range of brine compositions, leakage and hydrogeological conditions using numerical simulations that considered buoyancy impacts from both temperature and density differences. Results show that at close distances to the leak (up to 3-5 meters away), breakthroughs of the salt ( at 1,000 mg/L) occurred within one month of leakage in all modelled scenarios. At a radial distance of 10 meters, with a leak rate of 2 m3 /d, it took three to six months in most cases. For the leakage of relatively warm brines, the heat transport is separated from the salinity due to thermal retardation resulting in monitoring the breakthrough of heat more closely to the depth of the leakage point than the salinity breakthrough. In summary, this study indicates that the mode of dispersion of leaking geothermal brine strongly depends on the brine properties and the leakage and hydrogeological conditions. At the same time, vertical monitoring of temperature and conductivity at a limited distance from brine injection wells (<5m) appears to be a robust method for detecting a possible leak relatively quickly (within a month) and after limited contamination. The monitoring signal in the event of leakage is also sufficiently distinctive to prevent false positives.

Abstract

In this study, we assess the potential of large riverbed aquifers in semi-arid Africa, known as sand rivers, to mitigate water scarcity and salinity for multiple-use water supply through a case study of the Limpopo River in Mozambique. Such sand river systems are widespread and still heavily underused at a regional scale, particularly in Mozambique, with the riparian vegetation currently being the primary user, though only consuming a minor fraction of available water. At a local scale, we performed geoelectrical surveys, water level measurements (in river and groundwater), as well as field physicochemical measurements and hydrochemical and isotopic sampling at 38 locations in the river channel, margins and up to 6 km away from the river, over five years. Results show that these shallow systems can be up to a kilometer wide and 15 m thick and, at some locations, can extend laterally beyond the river channel, below thin layers of clay and silt. Large areas of the sand river channel carry runoff yearly, providing optimal conditions for rapid recharge into the coarse sands with a high storage capacity. Connectivity between the river margin and channel is clearly shown at the local scale, even though sand pockets located further away appear isolated (revealed by geophysics), isotopically different and more brackish. Recharge, evapotranspiration and mixing processes are confirmed through hydrogeochemical modelling. The proven connectivity is highly relevant as groundwater is abstracted locally, promoting socio-economic development in water-scarce regions.

Abstract

Monitoring regional groundwater levels provides crucial information for quantifying groundwater depletion and assessing environmental impacts. Temporal variation of groundwater levels is the response of the groundwater system to natural and artificial stresses in terms of groundwater recharge and discharge. The complexity and extent of the variation rest on the nature and storage properties of the aquifer system. High groundwater levels are usually found in the recharge zones and low in the discharge zones, resulting in groundwater flow from recharge areas to discharge areas. Continuous decline of groundwater levels has been observed in some of the monitoring boreholes within the National Monitoring Network. Groundwater level decline has been caused either by over-exploitation or reduction of groundwater recharge. Generally, the pattern of spatial and temporal variations of groundwater levels is the consequence of incorporating climatic, hydrological, geological, ecological, topographical, and anthropogenic factors. Therefore, understanding the pattern of spatial and temporal variations in groundwater levels requires a combined approach. A combination approach of National long-term groundwater level monitoring data, Hydrological stresses, Anthropogenic interferences, and characteristics of the groundwater system was used to understand the continuous decline of groundwater levels in selected monitoring stations across the country.

Abstract

Since 2018, the North China Plain has started a large-scale ecological water replenishment project for rivers and lakes, with 17.5 billion cubic meters total from the South–North Water Transfer Project and other water sources. It is a key question of how much water infiltration into aquifers will affect groundwater and how to characterize and evaluate this effect quantitatively. The groundwater numerical model of the Beijing-Tianjin- Hebei region as the main part of the North China Plain was established using a numerical simulation method, and the groundwater level variation under the replenishment condition was simulated and predicted. By comparing the two scenarios, the relative rise method of groundwater level was proposed to characterize the influence of river water infiltration on groundwater level, and the unstructured grid method was used to refine cells near the river to improve simulation accuracy. Simulation results show that the groundwater level around some rivers has risen significantly in the past four years, especially in the alluvial fan regions with better infiltration properties. Accordingly, at the Piedmont alluvial fan region, there is also a large influence range on groundwater level. The maximum influence distance is more than 10km (0.1m relative rise of groundwater level was taken as the influential boundary). According to the prediction, if the water replenishment project continues, the range of influence can continue to expand, but the expansion rate will slow down due to the reduction of the hydraulic gradient.

Abstract

Electromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure.

Abstract

Groundwater is increasingly being exploited in South African cities as a drought crisis response, yet there is poorly coordinated regulation of increasing urban users and usage and fragmented management of aquifers. Designing interventions and innovations that ensure sustainable management of these resources requires systems thinking, where the city is understood as an integrated, interdependent set of actors and flows of water. This paper presents a study that applied and integrated an urban water metabolism (UWM) analysis with a governance network analysis for two major South African cities facing severe drought risk, Cape Town and Nelson Mandela Bay. ‘Learning Laboratories’ in each city brought together stakeholders from various groundwater-related domains to build a shared understanding of how groundwater fits into the larger system and how various actors shape urban groundwater flows and the health of local aquifers. The UWM quantified all hydrological and anthropogenic flows into and out of each city (or urban system) to conduct an integrated mass balance. How this mass balance changes under varying climate change scenarios and land use was used as a focal point of stakeholder discussions. The governance network analysis highlighted that many state and non-state actors have a stake in shaping the quantity and quality of urban groundwater, such as regulators, service providers, water users, knowledge providers, investors in infrastructure, and emergency responders.

Abstract

This study assessed aquifer-river interaction using a combination of geological, hydrological, environmental stable isotope, and hydrochemical data in a non-perennial river system in the Heuningnes catchment. Results showed the depth to groundwater levels ranging from 3 to 10 m below ground level and aquifer transmissivity values of 0.17 to 1.74 m2 /day. The analytical data indicated that Na-Cl-type water dominates most groundwater and river water samples. Environmental stable isotope data of river samples in upstream areas showed depleted δ18O (-4.3 to -5.12 ‰) and δ2H (-22.9 to -19.3 ‰) signatures similar to the groundwater data, indicating a continuous influx of groundwater into the river water. Conversely, high evaporative enrichment of δ18O (1.13 to 7.08 ‰) and δ2H (38.8 to 7.5 ‰) were evident in downstream river samples.

It is evident from the local geological structures that the fault in the northeastern part of the study area passing Boskloof most likely acts as a conduit to groundwater flow in the NE-SW direction, thereby supplying water to upstream river flow. In contrast, the Bredasdorpberge fault likely impedes groundwater flow, resulting in hydraulic discontinuity between upstream and downstream areas. Relatively low conductive formation coupled with an average hydraulic gradient of 8.4 × 10−4 suggests a slow flow rate, resulting in less flushing and high groundwater salinisation in downstream areas. The results underscore the significance of using various data sets to understand groundwater-river interaction, providing a relevant water management platform for managing non-perennial river systems in water-stressed regions.

Abstract

ue to public health or environmental concerns, performing tracer tests in the field by injecting pathogenic microorganisms or contaminants of emerging concern into groundwater is not permitted. Therefore, examining the effects of preferential flow processes on these contaminants under controlled saturated conditions must be done in the laboratory, but the resulting transport parameters cannot be directly applied to field-scale groundwater models. This research considers how an upscaling relationship can be found using a colloidal tracer and three different scales: small laboratory columns (0.1 m scale), a large intact core (1 m scale), and a real-world gravel aquifer (10 m scale). The small columns were filled with gravel from boreholes at the field site, an alluvial gravel aquifer close to Vienna, Austria. The mesoscale consists of an undisturbed gravel column from a gravel pit near Neuhofen an der Ybbs, Austria. Results showed that a certain pattern emerges after an initial scale-dependent threshold, regardless of differences due to the small columns being repacked with aquifer material and the large column and field site being “undisturbed”. In this way, the mesoscale column allows us to gain insight into upscaling processes by incorporating an in-between step when comparing groundwater transport at the column- to the field scale.

Abstract

The SADC region has vast potential to alleviate water scarcity and promote growth through the responsible development of groundwater resources. To achieve this, it is crucial to understand the resource’s value, implement sustainable abstraction programs, protect its quality, optimize its usage for regional development, and implement innovative aquifer management programs, including artificial recharge. Greenchain Group is a water treatment company that recognizes the value of water and strategically deploys its expertise to maximize the potential of each drop. As membrane technology specialists and local manufacturers of this advanced technology, we understand how to design integrated solutions to safeguard water quality and accessibility. Our wide range of filtration technologies allows us to select the technology suited to the application and regional groundwater context and to produce high-quality water from various sources, including groundwater. Additionally, by removing contaminants/unwanted constituents from groundwater, we enhance the value of each drop of water for local potable consumption, eliminate the need for overwatering in agriculture, and allow for the creation of new agriculture/industries in regions with poor groundwater quality. This same technology can also treat wastewater and remove contaminants (e.g. chemical of emerging concern, PFAS) and thus is critical to water reuse applications and responsible Managed Aquifer Recharge. Greenchain Group’s treatment systems have been used in various industries, including agriculture, mining, energy, medical, food and beverage, and remote and mobile settings.

Abstract

This research aims to evaluate the carbon storage function of a Mediterranean peatland in changing climate conditions. The scientific strategy relies on a seasonal geochemical survey sourcing the carbon origin by considering the hydrosphere, lithosphere, biosphere, and atmosphere. This unprecedented research on a Mediterranean peatland reveals the seasonality of dissolved carbon inputs from primary production, organic matter oxidation, and time-changing recharge components within the catchment (rainwater, river water, shallow groundwater, deep groundwater). Based on the mixing proportions of all recharge water components, the study applies a reverse end-member mixing analysis to define the theoretical peat water d13CDIC value and compare it to the measured ones. The model explains 65 % of the data, demonstrating the water flow influence on peatland carbon content. In 35% of the cases, peatland processes such as primary production and organic matter oxidation drive the peat water’s carbon content. Peat organic and inorganic properties, d13CTOC, and d13CCO2 data demonstrate the role of groundwater as a CO2 source and the dominance of in situ primary production that argues in favour of carbon storage within such Mediterranean peatland. This research proves the relevance of geochemistry and isotope hydrology tools to disentangle and rank peatland water and carbon processes within peatland hydro-ecosystems. Overall, it reveals the necessity to take into account the interactions between water and carbon cycle processes, with particular consideration for groundwater as a CO2 source at the peatland-atmosphere interface, to build better models for the future evolution of the global climate.

Abstract

Slug tests are preliminary tests applied to determine the hydraulic conductivity and whether it is necessary to perform a pumping test on the borehole under investigation and should never be recommended as a substitute for a pumping test. For this reason, slug tests cannot be related to sustainable yield because slug tests cannot detect boundary conditions. The aim was to develop a methodology to relate slug tests to a potential yield estimation, investigating and reviewing the applicability and accuracy of the slug test methodology in South Africa, applied on fractured rock aquifers as established in 1995. The aim was achieved by reviewing the methodology applied for slug tests that are related to potential yield estimations, identifying the limitations of slug tests, investigating the possibility of updating the potential yield estimation method of 1995, and investigating the possibility of relating slug tests, to potential yield and transmissivity estimations through groundwater modelling. The investigation revealed that using transmissivity values determined through slug test homogenous modelling can be utilised to estimate the potential yield of a borehole under investigation by implementing correlation statistics. Note that this is not an absolute and is subject to limitations.

Abstract

The drinking water health issues have been considered due to improved living standards in recent years. Finding and developing high-quality groundwater with high-level minerals has become key to improving human health. The hydrochemical test data of 66 springs in Zhaojue County were analyzed using various methods, and the spatial distributions of H2 SiO3 -rich groundwater, hydrogeochemical characteristics, formation conditions and genesis were revealed. The main results including: 1) the groundwater with H2 SiO3 (≥25mg / L) was identified as the low salinity and alkaline water, which distributed in the six areas with the basement rocks of basalt,with a distribution area of about 79 square kilometers. The H2 SiO3 concentration was generally 25.74~46.04 mg/L; the low mineralization characterized the H2 SiO3 -rich groundwater of study area while the main hydrochemical types of groundwater are HCO3 - Ca·Mg, HCO3 -Ca, and HCO3 -Na; the Pearson correlation coefficient between the content of H2 SiO3 in groundwater and the content of pH is relatively high, indicating that the level of H2 SiO3 in groundwater in the study area is significantly affected by the pH value of the solution; the H2 SiO3 -rich groundwater was influenced by the water-rock interactions, the distribution range and solubility of silicate minerals ,the development of surrounding rock fissures, and water conservation and recharge conditions in the county, among which the water-rock interactions play a critical role. The results can provide a basis for the development of mineral water industry and the construction of urban and rural high-quality water sources in Zhaojue County.

Abstract

While traditional well and spring sampling are limited to the integration of point data and the interpolation of the data across large scales. Electrical measurements of aquifers can be extended across a range of scales and integrated to provide an improved quantitative understanding of groundwater systems. At a site in Oklahoma, USA, a karst-managed aquifer recharge research site is being used to test electrical techniques for aquifer characterization on the kilometer scale and monitoring the aquifer on the meter scale. At the kilometer scale, the data illustrate fault locations, siphons in flow paths, and previously uncharacterized conduits. At the metre scale, the monitoring data illustrate porosity structure, flow paths, and potential biological changes in the subsurface. The results indicate that electrical approaches can significantly change aquifer conceptual models and provide targeted sampling locations in karstic bedrock aquifers.

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

Natural processes (e.g., El Nio) and anthropogenic activities (e.g., land-use modification and groundwater abstraction) drive local and global hydrological changes. Consequently, these changes threaten the role of wetlands in the hydrological and ecological functioning of a catchment. Verlorenvlei is a vulnerable RAMSAR-listed estuarine lake located on the west coast of South Africa in Elands Bay. Since the 2015-2018 Western Cape drought, Verlorenvlei has experienced drier-than-normal conditions with less rainfall, negatively impacting the surrounding ecology. Seasonal and spatial changes of the water sources (e.g., rainfall, surface water, and groundwater) supporting the wetland and the interconnectivity between these reservoirs were investigated using O/H stable isotopes and hydrochemistry analysis. The study collected event-based rainfall (57 samples), surface water (18 samples), and groundwater (108 samples) in February, April, and June 2022. Stable isotope ratios and hydrochemistry indicate that groundwater outside the watershed (topographically and surface water delineated) supports the wetlands, suggesting that local and regional groundwater flow systems influence the Verlorenvlei. Furthermore, the Verlorenvlei is subjected to high evaporation compared to other surface waters and, in return, is reliant on baseflow supporting its hydrological functioning. The Krom Antonies and Hol sub-catchments exhibit overlapping groundwater isotope ratios and water types compared to the Verloren sub-catchment, suggesting a disproportionately high groundwater contribution from both sub-catchments into the wetland. Understanding Verlorenvlei’s water balance is necessary to improve ecological reserve determination studies to help ensure environmental and socio-economic sustainable water use

Abstract

Porosity describes the ratio between the volume of pores, cracks, and fissures and the total volume of a studied geological medium. This notion implies a volume averaging of the medium characteristics using the concept of Representative Elementary Volume (REV). Small volumes can contain only pores, while larger volumes typically contain both pores and fissures. Porosity can be highly scale-dependent, and different porosity values can be measured for the same geological formation. Furthermore, groundwater in the pores and cracks can be partly immobile or mobile. So, the porosity actively involved in groundwater flow can be discussed. A ‘mobile water porosity’ can be defined, but this remains highly dependent on the existing pressure conditions in the geological medium. In unconfined conditions, the term ‘effective porosity’ usually corresponds to the drainage porosity corresponding to the specific yield or storage coefficient. When dealing with solute transport and remediation of contaminated sites, another ‘effective porosity’ is needed to describe the advection velocity of the contaminant. This ‘mobile water porosity’ acting in solute transport processes typically takes lower values than drainage’s ‘effective porosity’. Scale issues must also be expected, as shown by field and lab tracer tests.

The term ‘Darcy velocity’ will be banished herein because it induces much confusion. For clarity, we propose to distinguish ‘drainage effective porosity’ and ‘transport effective porosity’. The physical meaning of both terms is discussed, and examples of supporting observations are presented for illustration and discussion.

Abstract

In 2021-23, northern Italy suffered a severe drought due to the absence of rainfall, which strongly affected the pre-alpine lake levels, affecting energy production, agriculture and sustainable river flows. This led to harsh consequences on agriculture, which in the Lombardy region almost completely relied on flooding irrigation methods using water from lakes through Ticino and Adda rivers. As part of the INTERREG Central- Europe project “MAURICE”, which focuses on Integrated Water Resources Management, the winter irrigation practice is proposed as a climate change adaptation strategy. The main project idea is to store surface water in aquifers in periods of exceedance (autumn/winter) using the very dense channels irrigation network as a “natural” infiltration system. The underground storage would increase the groundwater levels, bringing two main advantages during the spring/summer seasons: a good flow rate at plain springs and, in periods of water scarcity, the possibility to extract groundwater for agricultural purposes. Relying on the slow groundwater velocity (about 350 m/y), this practice keeps water stored in the subsoil just below the irrigated areas where the water is needed.

In the early project stage, a basin-scale numerical model is presented to test the potentiality of such practice. A specified water volume was distributed on the crop fields during the winter period, and the effects of such managed recharge were evaluated, also considering the possible problems deriving from the groundwater levels increase. The model demonstrates the adaptation measure feasibility, which will be tested at a field scale in a Pilot Area.

Abstract

Coal Ash Beneficiation is a government imperative for South Africa, and Eskom generates approximately 34 million tons of coal ash annually from their 14 pulverised coal fuel plants. It is estimated that there are approximately 6,000 abandoned coal mines in South Africa, of which 2,322 are classified as high risk, contributing to subsidence and the generation of acidic mine drainage. It is envisaged that coal ash could offer a support medium for the mines and neutralise the acidic mine water due to its alkaline nature. The Department of Fisheries, Forestry and the Environment has supported the initiative but has requested a means of modelling possible contamination due to placing the coal ash in these environments. To this end, laboratory trials were completed to generate the initial model and a controlled pilot site was established to validate the model’s accuracy. This trial evaluated stabilised and unstabilised coal ash as a means of acid water management. The laboratory trials showed that the ash could neutralise the pH of the mine water from approximately 2 to 7; this was sustained for the test period. In addition, sulphate and iron were significantly reduced in the treated water. The laboratory and site work results will be detailed in this presentation.

Abstract

Sand mining in southern Africa is on the rise, fuelled largely by rapid urbanisation. This creates a range of societal and biophysical challenges and supports livelihoods in regions with high unemployment. Relevant scientific studies are scarce. This study explores the impacts of sand mining from ephemeral rivers on Botswana, South Africa and Mozambique communities through field visits, interviews, modelling, remote sensing and legislative analysis. What was expected to be a hydrogeology project focussing on water resources identified a broader range of issues that should be considered. Initial results uncovered a range of negative biophysical impacts, including alteration of hydrological regimes, which in turn affect groundwater recharge and exacerbate drought and flood risks, destruction of riparian vegetation, increased erosion, damage to infrastructure (including bridges and roads), reduced water quality, and the spread of invasive plant species. Equally important are the range of social impacts, such as drowning people and livestock, loss of agricultural land, increased traffic, dust, noise and crime. Complex governance arrangements influence these social and environmental challenges. The findings highlight the need to adopt an inter- and trans-disciplinary approach that considers linkages between human and natural systems. This approach is essential for finding sustainable solutions for the provision of construction materials that limit detrimental impacts on water resources, ecosystems and livelihoods. 

Abstract

South Africa faces serious water scarcity challenges not only because it is a semi-arid country but also due to climate change. One of the most significant effects of climate change is an increase in temperature, which inevitably increases evaporation. Increased evaporation directly reduces the availability of surface water resources. Groundwater is less susceptible than surface water resources to evaporation and thus offers resilience against the impacts of climate change. Many South African cities, communities, and farmers depend on groundwater for domestic or other socio-economic purposes. This implies that groundwater resources which are currently or potentially utilisable should be identified, and suitable legal measures should be implemented to protect these resources from potential risks of harm or damage posed by anthropogenic activity. First, This article evaluates the effectiveness of the country’s existing regulatory framework to effectively protect South Africa’s groundwater resources and finds that the framework can be improved significantly. Secondly, it explores regulatory opportunities within the existing legal framework to strengthen South Africa’s groundwater governance regime, including using land use planning instruments to facilitate the implementation of groundwater protection zones

Abstract

Managed Aquifer Recharge (MAR) provides an integrated water governance solution that improves water security for communities and farmers by storing water in aquifers and managing groundwater extractions to ensure water supplies are available during droughts. Quantitative analysis of levelised costs and benefit-cost ratios (BCRs) of 21 MAR schemes from 15 countries and qualitative assessment of additional social and environmental benefits demonstrates the benefits of MAR compared to water supply alternatives. Cost-benefit analysis provides a systematic method for comparing alternative water infrastructure options. Levelised cost is a widely accepted method of comparing MAR with alternative water infrastructure solutions when market valuations of water are unavailable.

The benefits of MAR can be estimated by the cost of the cheapest alternative source of supply or the production value using water recovered from aquifer storage. MAR schemes recharging aquifers with natural water using infiltration basins or riverbank filtration are relatively cheap with high BCRs. Schemes using recycled water and/or requiring wells with substantial drilling infrastructure and or water treatment are more expensive while offering positive BCRs. Most MAR schemes have positive or neutral effects on aquifer conditions, water levels, water quality, and environmental flows. Energy requirements are competitive with alternative sources of supply. This analysis demonstrates strong returns to investment in the reported MAR schemes. MAR provides valuable social and environmental benefits and contributes to sustaining groundwater resources where extraction is managed.

Abstract

Year-round water security is at risk as socio-economic developments lead to increasing water demands, while climate change affects water availability through higher-intensity rainfall and prolonged periods of drought. Coastal zones and deltas with often high population densities experience additional risks of salinisation and land subsidence. These developments ask for creative solutions to secure sustainable and year-round access to fresh water. The subsurface provides storage capacity to actively infiltrate freshwater, bridging the time-gap between demand and supply. Combining infiltration with extraction and desalination of brackish water prevents the salinisation of aquifers whilst providing an additional water source. We call this COASTAR. A Dutch research consortium with partners like water companies and water boards develops COASTAR. Among COASTAR results are suitability maps for Aquifer Storage and Recovery (ASR) and Brackish Water Extraction (BWE) in the coastal zone of the Netherlands. The maps are based on geohydrological factors. A quick-scan analysis was also performed to quantify the nation-wide potential extractable ASR and BWE volumes. COASTAR develops case study models and local scale pilots on ASR and BWE. For two water supply regions, an analysis has been made to geographically match development in water demand with suitability for ASR and BWE as a step in the search for strategic locations to develop ASR and BWE. The suitability maps provide guidance for initiatives’ development and practical experiences from pilot projects; this provides important information for further upscaling of COASTAR approaches.

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

Understanding the sensitivity of groundwater resources to surface pollution and changing climatic conditions is essential to ensure its quality and sustainable use. However, it can be difficult to predict the vulnerability of groundwater where no contamination has taken place or where data are limited. This is particularly true in the western Sahel of Africa, which has a rapidly growing population and increasing water demands. To investigate aquifer vulnerability in the Sahel, we have used over 1200 measurements of tritium (3H) in groundwater with random forest modelling to create an aquifer vulnerability map of the region.

In addition, more detailed vulnerability maps were made separately of the areas around Senegal (low vulnerability), Burkina Faso (high vulnerability) and Lake Chad (mixed vulnerability). Model results indicate that areas with greater aridity, precipitation seasonality, permeability, and a deeper water table are generally less vulnerable to surface pollution or near-term climate change. Although well depth could not be used to create an aquifer vulnerability map due to being point data, its inclusion improves model performance only slightly as the influence of water table depth appears to be captured by the other spatially continuous variables.

Abstract

The Bauru Aquifer System (BAS) is a significant source of water supply in the urban area of Bauru city. Over the last decades, BAS has been widely affected by human activities. This study evaluates the nitrate plume in groundwater from 1999 to 2021 and how it relates to urbanization. The methods used were analysis of the data of 602 wells, survey of the sewer network and urbanization, and reassessment of nitrate concentration data. The seasonal analysis of 267 groundwater samples allowed the identification of concentrations up to 15.1 mg/L N-NO3 - mainly from the area’s central region, where the medium to high-density urban occupation dates back to 1910. Otherwise, the sewage system was installed before 1976. The reactions controlling the nitrogen species are oxidation of dissolved organic carbon, dissolution of carbonates, mineralization, and nitrification. Wells, with a nitrate-increasing trend, occur mainly in the central and northern regions, settled from 1910 to 1980-1990, when no legislation required the installation of the sewage network before urbanization. In turn, wells with stable or decreasing nitrate concentrations occupy the southwestern areas. Over the years, the concentrations of these wells have shown erratic behaviour, possibly caused by the wastewater that leaks from the sewer network. The bivariate statistical analysis confirms a high positive correlation between nitrate, sanitation age, and urban occupation density, which could serve as a basis for the solution of sustainable groundwater use in the region. Project supported by FAPESP (2020/15434-0) and IPA/SEMIL (SIMA.088890/2022-02).

Abstract

Groundwater governance and risk management in the Murray-Darling Basin in Australia (MDB) are being challenged by the increasing demand for water and the growing scarcity and variability of water supply owing to climate change. Over the past 20 years, consideration of risk related to groundwater in the MDB has evolved from concerns about the impact of groundwater extraction on surface water resources to an integrated assessment of risks to connected water resources and ecosystems. The Basin Plan includes a comprehensive framework for assessing risks to Basin water resources and ecosystems, but further scientific and policy developments are required to implement the plan. Consistent definition and improved assessment of groundwater-surface water connectivity are required, together with longer planning timeframes. Multi-year planning rules and policies must be developed to exploit opportunities for integrated management of groundwater and surface water resources and storage to manage droughts and floods. Risks to groundwater quality and groundwater-dependent ecosystems must be adequately assessed and monitored to avoid adverse impacts on communities and long-term loss of ecosystem services. Further improvements can be made in assessing cumulative risks from coal seam gas and coal mining. Additional research can be targeted towards knowledge gaps and uncertainties that pose the greatest risk to connected groundwater and surface water resources and ecosystem viability. Most importantly, further training and capacity building in water management agencies is critical to enable effective and transparent monitoring and management of Basin water resources.

Abstract

Two numerical simulations using Feflow® software were conducted to demonstrate the utility of geophysical data to accurately determine groundwater levels and provide additional data to the groundwater modelling community to improve the model’s accuracy. One simulation is based on regional piezometric data, and the other uses geophysical data acquired through transient electromagnetic (TEM), electrical resistivity (ERT), and ground-penetrating radar (GPR) surveys. After both numerical analyses, the root mean square errors (RMS) obtained from the piezometric data and the multiple geophysical techniques to confirm the correlation between observed and simulated water levels were similar at 3.81 m and 2.76 m, respectively. Through a discrete modelling approach, this study shows that groundwater levels estimated using geophysical tools and methods and those determined by direct observation are comparable. In addition, before the 3D numerical flow model, a 3D geological model was built to fully represent this highly complex, heterogeneous, and anisotropic hydrological environment of the Saint-Narcisse moraine glacial deposits in eastern Mauricie, Québec. This stratigraphic reconstruction with Leapfrog software was necessary to provide a more detailed and realistic representation of this complex aquifer system. This study illustrates how geophysical data can complement direct observations to provide additional hydraulic information to hydrologic modellers. Geophysical surveys provide an extensive set of soft data that can be leveraged to improve groundwater flow models and determine water-table heights, particularly in areas characterized by limited direct piezometric information.

Abstract

Underground coal gasification (UCG) is a high-temperature mining method that gasifies coal in situ to produce a synthetic gas that can be used as feedstock for industrial purposes. Coal conversion leads to mineral transformation in the gasifier, which ultimately interacts with the rebounding groundwater post-gasification. This poses a groundwater contamination risk, the biggest environmental risk from a UCG geo reactor. There is currently no model for UCG operators and regulators to assess the total risk of groundwater contamination from UCG operations. This study collates literature on groundwater contamination from UCG operations and presents a workable but comprehensive groundwater risk assessment model for a spent UCG chamber. The model follows the source-pathway-receptor arrangement where groundwater contamination sources are identified as ash, char, roof and floor. All possible pathways are assessed for hydraulic connections with the spent geo-reactor via acceptable geochemical tests, including stable isotopes, hydrochemistry and stratification analysis. Finally, the receptor aquifers (e.g. shallow aquifers) are monitored periodically to determine if contamination has occurred.

Abstract

Aquifer Thermal Energy Storage (ATES) is increasingly utilised to optimise the efficiency of Ground Source Heat Pump (GSHP) systems. However, the criteria for selecting ATES over Unidirectional GSHP is not well-defined. Inappropriate selection of AETS can adversely impact the long-term viability and the GSHP system itself, as well as regional hydraulic and thermal sustainability due to adverse groundwater levels and temperature change. This is a concern in urban aquifers, where GSHP systems are increasingly common. There is a perception that ATES is always the most efficient; however, there is no clear definition of efficiency and how it can be readily assessed at the GSHP design stage. It is proposed and demonstrated herein that GSHP efficiency can be assessed by modelling borehole pumping in lieu of complex Coefficient of Performance calculations for the whole GSHP system. Borehole pumping is a more readily definable modelling outcome for comparing options at an individual site but is also a suitable proxy for comparing efficiency at different sites when given as a flow per unit rate of pumping. Operational efficiencies for ATES versus Unidirectional systems are presented using the pumping rate criteria for modelled scenarios. Here, three model inputs are varied: 1) the balance of heating and cooling, 2) the configuration of a single borehole pair across a hydraulic gradient and 3) the hydraulic gradient itself. These were assessed using coupled groundwater flow and heat transport modelling in Feflow to refine the Goldilocks Zone, the perfect balance, for these variables.

Abstract

Groundwater resources in Africa face increasing threats of over-exploitation and pollution due to urbanization, agricultural and mining activities, yet monitoring remains challenging. Conventional approaches to monitoring groundwater at the exclusion of communities have not been successful. To overcome this, it is important to fully engage and train local communities in monitoring Groundwater Levels (GWLs), Rainfall and Water Quality (RWQ), which are important for understanding groundwater dynamics in wellfields. In this way, villagers can better understand groundwater issues and convey this information to others to cooperatively manage groundwater. A pilot program to monitor GWLs and RWQ by locals was initiated in two villages each in Botswana and Uganda to learn about its effectiveness. Through continuous stakeholder engagement, the local communities in the two case studies have been facilitated, trained and supported in monitoring groundwater and using the information collected to understand groundwater trends and their sustainability. Preliminary results indicate improvement in understanding the importance of groundwater monitoring by the communities and the implications on groundwater sustainability for improved livelihoods. This has become useful to one of the communities engaged in a village-level irrigation project which depends on groundwater resources. This project builds on a successful village-level participatory approach developed in the MARVI project (www.marvi.org.in ). It seeks to contribute to the United Nation’s 2022 call on “Groundwater: making the invisible visible” to highlight the importance of better monitoring and managing this vital resource.

Abstract

Water and contaminant transport processes in the vadose zone through preferential flow paths can be understood using environmental and artificial tracer methods. Further improvement in tracer techniques can be achieved by applying numerical modelling techniques of both water and solute transport, accounting for additional information on water movement and the matric potential of the vadose zone. The vadose zone is often ignored as a key component linking the land surface to the groundwater table, even though it acts as a filter that removes or stores potential contaminants. The water transit time between the surface and the groundwater table is frequently investigated using artificial tracers that normally show conservative behaviour. The main advantage is that the input function can be clearly defined, even though artificial tracers can generally only be applied over a relatively small area. The research is expected to provide insight into the selection and use of environmental and artificial tracers as markers for detecting and understanding the contaminant transport processes and pathways of contaminants in altered vadose zone environments (open-pit quarry). The impact is improved characterisation of the pathways, transport and migration processes of contaminants, and residence times, leading to the development of appropriate conceptual and numerical models of vadose zone flow processes that consider various contaminant sources. The principal aim is, therefore, to systematically examine the transport mechanisms and associated pathways of different environmental and artificial tracers in an open-pit quarry.

Abstract

An approach for evaluating the sustainability of managed aquifer recharge (MAR) has been developed and applied in Botswana. Numerical groundwater modelling, water supply security modelling (SWWM) and multi-criteria decision analysis (MCDA) are combined to thoroughly assess hydrogeological conditions, supply and demand over time and identify the most sustainable options. Botswana is experiencing water stress due to natural conditions, climate change and increasing water demand. MAR has been identified as a potential solution to increase water supply security, and the Palla Road aquifer, located 150 km northeast of the capital, Gaborone, has been identified as a potential site. To evaluate the potential of MAR and if it is suitable for improving water supply security, three full-scale MAR scenarios were evaluated based on their technical, economic, social and environmental performance relative to a scenario without MAR. The numerical groundwater model and the WSSM were used iteratively to provide necessary input data. The WSSM is a probabilistic and dynamic water balance model used to simulate the magnitude and probability of water shortages based on source water availability, dynamic storage in dams and aquifers, reliability of infrastructure components, and water demand. The modelling results were used as input to the MCDA to determine the sustainability of alternative MAR scenarios. The results provide useful decision support and show that MAR can increase water supply security. For the Palla Road aquifer, storage and recovery with a capacity of 40 000 m3 /d is the most sustainable option.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

Basin-scale studies addressing the transfer of pollutants among groundwater and surface water bodies are essential to support local authorities in the sustainable management of freshwater resources. This work revealed that, in the hydro-system of the Oglio River basin (Northern Italy), nitrate pollution in groundwater, originated by overfertilization, is transferred downstream to surface water bodies via outflow through lowland springs and baseflow to gaining rivers. Downstream groundwater is unaffected due to reducing conditions that facilitate denitrification. It follows that efficient measures to reduce nitrate pollution in surface water bodies should not be applied solely to rivers/streams but, instead, they should include the upstream groundwater body. The work aimed at understanding nitrate pollution dynamics in an intensively irrigated hydro-system, focusing on the role played by the complex interaction among irrigation water, surface water and groundwater. The study relied on nitrate concentration, Cl/Br ratio, stable isotopic composition of water, nitrate and boron in groundwater, river, lake, spring, and rainwater samples. Results highlighted a well-defined spatial distribution of nitrate concentrations in groundwater, mainly driven by irrigation practices: (1) where groundwater-fed irrigation is done, return flow promotes high nitrate concentrations (>50 mg/L) due to groundwater recirculation; (2) where intensive surface-water-irrigation is practised, fed by low-nitrate river water, return flow generates lower nitrate concentrations (<50 mg/L) due to dilution. This work highlighted the importance of a holistic approach jointly investigating surface water, groundwater, and irrigation water when nitrate pollution is examined at a basin scale.

Abstract

Hydrogeology and hydrology are commonly overlooked aspects of geoheritage, despite strong geological links. Water in all its forms has played a critical role in the development of Earth, and the shaping of its landforms (in addition to sustaining all life on the planet), and access to water has been the core reason for the establishment of numerous human settlements. The evolution of a settlement’s water supply tracks its development history across the Holocene, providing an excellent tool for teaching the public about human interactions with the Earth and our shared future going forward in a changing climate. To this extent, two self-guided trails (with associated guidebooks and mobile apps) have been developed in areas of the Western Cape province of South Africa with rich water supply histories and hydro-geoheritage – the Table Mountain Dams Trail in Cape Town and the Hermanus Water Walk in the Overberg region. The surface and groundwater supply systems that both trails cover have an inherently unique link with the Ordovician-Devonian Table Mountain Group fractured aquifer systems (including the complex tectonic and geomorphic evolutionary history that has led to the present landscapes), which most residents and international visitors are generally unaware of (despite being major tourist regions in South Africa). It is envisioned that through these guides/trails, the reader/walker will gain a better understanding of/appreciation for the value of water, a greater feeling of ownership for the natural history of the city/region they reside in, and will strive to preserve associated hydro-geoheritage for future generations.

Abstract

In Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system.

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

The 16th Lum Nam Jone reservoir is located in Chachoengsao Province, Thailand. Since 2019, water has become highly acidic with a pH of 2.5-3.5 and contaminated by heavy metals. The groundwater plume is associated with high concentrations of Iron (60 – 3,327 mg/L), Manganese (38 – 803 mg/L), Copper (5 –500 mg/L), Zinc (11 –340 mg/L), and high Total Dissolved Solids (2,600 –23,000 mg/L). The hydrogeochemical assessment confirmed that the contamination is related to the molybdenum ore processing plant located upgradient. The industrial wastewater was illegally discharged underground and flowed to the reservoir due to a hydraulic gradient. The main objective of this research is to evaluate the efficiency of different reactive materials for In-situ remediation using a permeable reactive barrier (PRB). The experiment column setup showed that marl has the highest efficiency in elevating pH by 3.6 units. The Fe, Cu, and Zn removal rates by crushed shells were 100, 98, and 60%, respectively. The Fe, Cu, and Zn removal rates by limestone were 100, 73, and 32%, respectively. The Fe, Cu, and Zn removal rates by marl were 100, 100, and 48%, respectively. Regarding the laboratory-scale experiment, the pilot PRB was installed upstream of the reservoir. The PRB was filled with marl at the bottom, overlain by limestone, and then covered with the uppermost rice straw layer. The pH increased by 2.6 units inside PRB (from pH 3.1 to 5.7). A reduction of about 50% in Fe, 85% in Cu, and 50% in Zn had been achieved.

Abstract

Italian urban areas are characterized by centuries-old infrastructure: 35% of the building stock was built before 1970, and about 75% is thermally inefficient. Besides, between 60% and 80% of buildings’ energy consumption is attributed to space heating. Open-loop Groundwater Heat Pumps (GWHPs) represent one of the most suitable solutions for increasing the percentage of energy consumption from Renewable Energy Sources (RES) in cities such as Turin city (NW Italy). However, allowing the diffusion of GWHPs cannot be disregarded by the knowledge about hydrogeological urban settings. As the thermally affected zone (TAZ) development could affect energetically adjacent systems, the TAZ extension must be well-predicted to guarantee the systems’ long-term sustainable use. Different buildings of the Politecnico di Torino are cooled during the summer by 3 different GWHP systems. To investigate possible interactions with other neighbouring plants and to preserve the water resource by capturing its positive and productive aspects from an energy point of view, a complex urban-scale numerical model was set up for comprehensively analysing the impact of the geothermal plants on the shallow aquifer. Different simulation scenarios have been performed to define possible criteria for improving the energy functionality of the groundwater resource. Besides, the extent of the TAZ generated was defined as a function of the specific functioning modes of the different GWHP systems. Numerical simulations, legally required by competent authorities, represent a fundamental tool to be applied for defining hydrogeological constraints derived from the GWHPs diffusion in Italian cities.

Abstract

Technological advances in recent years provide a unique opportunity to adopt new instruments for groundwater monitoring to reduce operating costs, obtain higher measuring accuracy and reliability, and accomplish comprehensive real-time monitoring. Microelectromechanical system (MEMS) technology enables small and low-cost energy-saving microsensors and integration with IOT for real-time monitoring. This presentation will discuss the findings of the performance of a newly developed instrument based on a MEMS piezoresistive pressure sensor. We demonstrate a path forward for the expansion of this research. The sensor is designed to be applicable to both open and closed systems for measuring groundwater level and pore water pressure. Tests show that MEMs (0-689 kPa range) can obtain full-scale accuracy between 0.2-0.3% in groundwater level prediction. However, the measurement result mainly depends on the appropriateness of the calibration method. Regarding pore pressure measurement under sealed conditions by gravel sand and cement-bentonite grout, a full-scale accuracy between 0.3% and 0.725% is accessible, depending on the backfill material. However, it was evident that backfill materials have considerable effects on the response time and accuracy of measurement, in which a stiff and less permeable grout can increase inaccuracy and time lag in measurement. Overall, the initial results have shown a promising future for this technology in groundwater monitoring. However, more tests and analyses are still required to improve sensor design, energy consumption for IOT applications, wireless module, installation system and its specifications such as accuracy, conformance, precision, and stability.

Abstract

Unicef is the WASH sector lead globally and is, present at the country level, the main counterpart of government, especially regarding the component of the water balance utilised for potable safe water supplies. This mandate means that Unicef then has a role in looking at water resources nationally and not just as individual projects, and in doing so, contributes to good water governance as an integral part of system strengthening. Ensure this is done in partnership with other ministries and stakeholders that support them through advocacy for humanitarian and developmental access and support in technical areas such as groundwater assessments and monitoring. The focus on groundwater is especially linked with the fact that groundwater plays a major role due to its buffering capacity to climate variations, easier access and global coverage. Since groundwater is the most significant component of accessible freshwater resources, it is in the interest of UNICEF to make this resource more visible to meet both development and humanitarian goals, strengthen national systems and ultimately build resilience in mitigating water scarcity to scale or at the National level. Therefore, examples will be presented where Unicef has engaged on this journey with nations such as Afghanistan, Yemen, Mozambique and Rwanda to understand their water resources better. The overall objective at the National level is to adapt the capacity to withstand and recover as quickly as possible from external stresses and shocks or build resilience.

Abstract

Stable isotopes of the water are widely used in volcanic contexts to identify the recharge area, thanks to a strong orographic effect. Such data help improve the study areas’ conceptual model, especially to identify flow paths through the volcanic edifice. The most common pattern considered is a high to medium-elevation recharge area on a flank of the volcano, feeding both local perched aquifers and a deep basal aquifer. This is quite common for “shield volcanoes”, with the flank comprising a thick accumulation of lava flows. On composite volcanoes, especially in a volcanic arc context, the large diversity of lithologies (effusive/ destructive events dynamics) along the flanks may create a compartmented aquifers system. The Arjuno-Welirang-Ringgit volcanic complex (East Java) has been studied to elaborate a hydrogeological conceptual model. Stable isotopes of the water show significant results in identifying the recharge areas of several aquifers that are outflowing at a similar range of elevation. These results help to propose a water flow pattern from the recharge areas to the main springs with juxtaposed and superposed aquifers. This also leads to constraining the geometry of the aquifers and concluding that one volcanic complex with several recharge areas can feed juxtaposed aquifers. These results also highlight the need to adapt the study scale to each “point of interest” in the volcanic context, as each spring shows a different flowing pattern, preferential recharge elevation, and surface area. These are mandatory data to propose an adapted groundwater management.

Abstract

Groundwater is an important freshwater supply that has a significant role in the economy. However, water is increasingly becoming scarce in several regions. Huai Krachao Subdistrict in Kanchanaburi Province is an example of an area that has been experiencing a severe drought for decades due to the impacts of climate change. This study was conducted to delineate the groundwater potential zones in hard-rock terrains using geographic information system (GIS) techniques. The study aims to explore deep groundwater resources in challenging areas and propose alternative methods supporting traditional groundwater exploration. This finding revealed that the groundwater potential zones were classified into high, moderate, and low potential zones based on the groundwater potential index (GWPI), integrated using the Weighted Index Overlay Analysis. The computed weights from the Analytical Hierarchy Process were acceptable and consistent. The high potential zones mainly occur in the Silurian-Devonian metamorphic rocks. The GIS-based analytical results were later prepared for detailed field investigation, including collecting well information and conducting the 2-dimensional geophysical survey. To prove the GWPI map, 9 groundwater wells were drilled in the high potential zones. Consequently, well yields obtained from the pumping-test analysis ranged from 24-40 m3 / hr, some of which are springs rich in dissolved minerals. Accordingly, a significant amount of water could meet the water demand, supplying about 1 million m3 /year. Under these circumstances, discovering new groundwater resources can support roughly 5,000 people and agricultural lands no less than 480 hectares (4.8 km2 ).

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

Given the challenging global water outlook due to climate change and urbanisation, there is a heightened necessity for greater water resilience at critical facilities to tackle water disasters or disasters that lead to water crises. In 2017, the Western Cape Province of South Africa experienced an extended drought with the risk of acute water shortages. The Western Cape Government (WCG) developed business continuity plans and implemented a programme to ensure water supply to certain critical service delivery facilities, utilising the strategy of developing localised groundwater supply systems. The case study research of the WCG program enabled the development of an evaluation framework that assessed this strategy’s effectiveness in improving water resilience levels at critical facilities. From the lessons learnt in the WCG programme, the research also crystallised the critical success factors in sustainably implementing this strategy. The research showed that this is an effective strategy for its purposes and provides both current and future disaster preparedness planners with an improved understanding of the levels of water resilience achievable through this strategy and the methodology to achieve it best.

Abstract

The Lake Sibaya groundwater-dependent catchment in uMhlabuyalingana (KwaZulu-Natal) has been the focus of hydrological research since the 1970s. The continuous decline in lake water levels and groundwater stores has prompted recent efforts. To increase confidence in the relative attribution of known causes of declines, an existing MODFLOW groundwater model was updated based on reviewed and extended hydrological input datasets and more accurate land-use and land cover (LULC) change data. A novel approach was used in this study, which involved running the ACRU surface-water model in distributed mode to provide dynamic recharge outputs for the groundwater model. This approach considers LULC changes, improved spatial and temporal distribution of climatic data, and land-surface hydrological processes. The refined groundwater model provided satisfactory simulations of the water system in the Lake Sibaya catchment. This study reports on the advances and limitations discovered in this approach, which was used to reassess past to current status quo model simulations for the region. The model was then used, as part of a multidisciplinary project, to assess the response of the lake water system under various LULC preferences based on inputs from local communities under two future climate scenarios (warmer wetter and warmer drier) in the current ongoing WRC project. The ultimate goal is to advise water resources management in the catchment.

Abstract

Groundwater is a critical resource in Namibia, particularly in the Kunene and Omusati Regions, which are among the driest in Sub-Saharan Africa. Hydrogeological mapping is essential to ensure this resource’s sustainable use and management. The hydrogeological map of Namibia was updated recently (2021). However, the details of a 1:1M map are too coarse for regional groundwater management. An ongoing study of groundwater potential assessment in the two regions required downscaling the information to 1:250 000. This work made use of geological maps 1:250 000 from the Geological Survey of Namibia, about 430 selected wells including 20 recent boreholes, 117 reinterpreted pumping tests, some existing reports from private companies, academic works including a PhD thesis, interviews with local water resource experts and statistical analysis of 6 500 wells from the National Groundwater Database (GROWAS II) maintained by the Ministry of Agriculture, Water and Land Reform (MAWLR). The regional hydrogeological map obtained was then associated with the recharge evaluated in a separate task of the same project to assess the available groundwater sustainability. By assessing abstraction costs and water demand, the work gives insights into areas where groundwater abstraction can be increased or restricted to ensure sustainable use. As conscientious and serious as this study may be, it does not replace a master plan but allows a global vision of the development potential of groundwater at a regional scale. This study was financed by the French Agency for Development (AFD) under a tripartite agreement (MAWLR-MEFT-AFD).