Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 151 - 200 of 795 results
Title Sort descending Presenter Name Presenter Surname Area Conference year Keywords

Abstract

atural water-rock interaction processes and anthropogenic inputs from various sources usually influence groundwater chemistry. There is a need to assess and characterise groundwater quality monitoring objectives and background values to improve groundwater resource monitoring, protection and management. This study aims to determine monitoring objectives and characterise monitoring background values for all monitoring points within the Soutpansberg region. This study used long-term groundwater quality monitoring data (1995- 2022) from 12 boreholes and 2 geothermal springs. Monitoring objectives were determined from land-use activities, allocated groundwater use, and water use sectors. Monitoring background values were determined from the physio-chemical parameters from each of the 14 monitoring points. This study determined monitoring objectives and background values of all monitoring points and all physio-chemical parameters in the Soutpansberg region. This study recommends reviewing the determined monitoring objectives and background values every 5 to 10 years to assess any change in land use, groundwater use and sector and monitoring data trends.

Abstract

Work is being conducted in Limpopo province following a large volume spill of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant volume of groundwater contamination. This is by far the largest spillage to date in South Africa.10 million litres of jet fuel leaked for a 15 year period from an underground pipeline until its detection 13 years ago. The leak has since been repaired and bailing was the first method proposed and applied to the recovery of the free product, but due to its ineffectiveness the "quicker"pump-and-treat method replaced it. Due to complications caused by pum-and-treat, the process was stopped in 2007 and is about to be reinstated again in 2013. A village to the north of the spillage depends mostly on groundwater. Immediate remediation actions have to be established before the contaminant reaches their abstraction boreholes. This project aims to model the areal extent of this contaminant and eventually design a life cycle of remediation. This will be based on comparison between existing models dated 2002 and 2012 respectively for background information and to address the influence of ten years' bailing, pumping and natural attenuation. The new model will focus around implementing remedial measures to prevent further migration of the free phase or dissolved plumes in order to protect the water supply to the surrounding villages. The progress will be presented in this paper.

Abstract

In this paper we present results of a field study that focused on the characterisation of submarine groundwater discharge (SGD) into False Bay (Western Cape) with emphasis on its localisation. SGD is defined here as any flow of water from the seabed to the ocean. Thus, it includes (1) advective flow of fresh terrestrial groundwater as well as (2) seawater that is re-circulated across the ocean / sediment interface. Groundwater discharge into the coastal sea is of general interest for two reasons: (i) it is a potential pathway of contaminant and nutrient flux into the ocean, and (ii) it may result in the "loss" of significant volumes of freshwater. In our investigation we applied environmental aquatic tracers, namely radionuclides of radon (222-Rn) and radium (223-Ra, 224-Ra), as well as physical water parameters (salinity and temperature). The concentrations of radon and radium can be used as tracers for groundwater discharge since radon and radium are highly enriched in groundwater relative to seawater. We conducted discrete point measurements of seawater and of terrestrial groundwater as well as continuous radon time-series measurements of near-coastal seawater. A large-scale survey was performed along the entire shoreline of False Bay and revealed distinct positive anomalies of radon in the area of Strand/Gordons Bay and a rather diffuse anomaly along the Cape Flats, which is indicating possible groundwater discharge in these areas. The location of these anomalies remained constant to a large extent throughout several surveys that were performed during different seasons, although these anomalies varied with regard to their magnitude and clearness. Further detailed studies were undertaken in the area of Strand/Gordons Bay including radon time-series measurements in the coastal sea at a fixed location in order to estimate the quantity of SGD and its variability on a tidal time scale. The results indicate that groundwater discharge rates are significantly elevated during low tide. Furthermore, the distribution of radium isotopes (224-Ra/223-Ra ratios) in the Strand/Gordons Bay area indicate a "groundwater" residence time of less than 10 days within a distance of 5 km from the shore. In summary, we found spatially considerable constant SGD locations during different field campaigns. Additionally, we gained a rough understanding of the SGD dynamics on a tidal time scale, its magnitude and groundwater residence time within the inner bay after discharge. These results can be beneficial to trace back contamination in near-coastal waters or to find potential locations for groundwater abstraction.

Abstract

The Lower Berg River Aquifer System, situated in the Western Cape province of South Africa, is important to the towns that overlay it, as they rely on the aquifer for water supply, which supplements industrial development and residential growth. This aquifer system is important because surface water resources in the area are finite and fully allocated. Despite studies on the Lower Berg River Aquifer System since 1976, knowledge of the geological layers, recharge and discharge areas, and groundwater flow paths remain limited. This study aimed to provide greater insight and understanding of the aquifer to assist in better management. Investigations included a Time Domain Electromagnetic airborne geophysical survey, the assessment of groundwater levels, infiltration tests, hydrochemical analyses, and stable and radioactive isotope analyses. These methods allowed for the identification of the aquifer’s layers and extent, determination of water quality in different parts of the aquifer, delineation of flow paths through the saturated and unsaturated zones, identification of inter-aquifer flow, as well as different modes of recharge.

Abstract

Define chemical signatures from river waters collected in the Crocodile (West) and Marico Water Management Areas, South Africa. Samples were analysed for anion complexes using Ion Chromatography (IC) and major and trace element chemistry using quadrupole Inductively Coupled Plasma-Mass Spectrometry (q-ICP-MS). Results are used to define the various chemical signatures resulting from activities within the study area which include mining, agriculture, industry, residential and domestic, and recreational usage and to differentiate the 'background' that arises from the natural geological heterogeneity. The aim of this characterisation is to fingerprint the chemical signatures of various anthropogenic activities irrespective of background. Results from this investigation have been mapped using GIS to visualise the data across the study area. Based on the results, the contamination sources within the area can be identified and ranked in terms of their contribution to the total effective contamination received at Hartebeespoort Dam. {List only- not presented}

Abstract

Groundwater recharge assessment was undertaken in the crystalline aquifer of the Upper Crocodile River Basin, Johannesburg South Africa. The basin is characterised by the complex hydrogeological setting represented by weathered and fractured granitic gneisses overlain by quartzite, shale and dolostone. A number of recharge estimation methods including the Stable Isotope Enrichment Shift method, were tested. The measurement of δ 18O and δD in springsrevealed the presence of high elevation recharge or cold weather recharge that occurs prior to extreme evaporation, undergoing deep circulation and discharging at the contact between the Witwatersrand quartzite and the underlying shale. In the dolostones, recharge occurs after evaporation at higher elevation undergoing deeper circulation through the dissolution cavities.

The Water Table Fluctuation method in the dolostone resulted in the mean annual recharge of 99 mm/year, representing 14% of mean annual precipitation. The Reservoir Water Balance method revealed that the Pretoria Group shale aquifer contributes 16% of dam water outflow per year (groundwater discharge) which equates to 3 429 662 m3 on average, while 7% of dam inflow is lost to groundwater constituting groundwater recharge of average 2 084 131 m3 per annum. Baseflow Separation method applied gave an average recharge value of 9.4% for the entire catchment. The estimated average recharge for the entire catchment was found to be 13% corresponding to 91 mm, which equates to 374 Mm3 . The Stable Isotope Enrichment Shift Method resulted an average annual recharge of 26.1% in the aquifers composed of quartzites and 3% in the dolostones. The method is found to be promising for application in spring regimen however, a further development is recommended since small shifts exaggerate recharge while large shifts undermine it.

Abstract

In the following study, the soil and groundwater regime of the Rietvlei wetland near Cape Town are characterised. This has been done by means of logging the subsurface material during the construction of 8 shallow wells, complimented with field observations, and surveying the dug wells. The water stemming from these wells was sampled and analysed for Oxygen 18 and Deterium. Downhole salinity logs of the wells were also undertaken and rainfall samples were analysed for the aforementioned stable isotopes. Results indicate a distinct relationship between elevation and soil structure. Through the use of the water table method, it was found that the relationship between elevation and soil moisture had a direct impact on spatially distributed groundwater recharge on an event basis. Furthermore, higher salinities were found with depth in groundwater in the same wells which had higher recharge values. Isotopic results indicate that groundwater all stems from rainfall, with the exception of Well 8 is influenced by the river due to its proximity to the surface water body. The various water chemistries and soil profiles have a direct impact on the type of flora and its distribution throughout the study area. This study managed to conceptualize the relationship between groundwater, soil profiles and the various plant types surviving in the Rietvlei wetland. Future studies can focus on computer based approaches in order to predict how changes in groundwater characteristics caused by natural or anthropogenic factors would affect other ecohydrological processes within the wetland. These findings can be incorporated in decision making processes concerning groundwater management.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.

Abstract

The aim of the following study was to characterise the soils of Sutherland, located in the Northern Cape of South Africa. This was completed in order to shed light on possible pathways for infiltration and understand the ultimate impact on groundwater resources. Therefore, the relationship between the soil characteristics and infiltration was explored. To achieve this, field work was conducted whereby soil profiles were exposed in order to examine the subsurface characteristics of the soil and map the soil types. Thereafter, infiltration tests were taken randomly across the terrain in order to determine the in-situ properties of the soils in the region. Dye tracer tests were conducted on two plots of 1m2 within the study area, to determine the preferential flow paths and heterogeneities within the area. Field observations, as well as dye tracer tests, indicate a low clay content at the surface. This could be attributed to high wind velocity. Finally, it is shown that local river beds are hydraulically conductive due to the coarse nature of the underlying gravel. Therefore these strips of land need to be protected in order to avoid possible contamination of the already limited groundwater supplies in the region.

Abstract

Characterization of Groundwater Potential in the northern parts of the Limpopo Province, South Africa: Results from Integrated Geophysical Studies across the Sagole and Tshipise Hot Springs.
The Sagole and Tshipise hot springs are located in the northern Limpopo Province of South Africa. The geology of the area consists of dykes, dolerite sills, quartzite and undifferentiated meta-sediments. Regional-scale airborne magnetic data and satellite images were used for mapping structures and lithological boundaries in order to identify permeable zones that are associated with thermal groundwater aquifers. Various filtering techniques were used to enhance the magnetic signatures that correspond to structural features. Modeling of airborne magnetic data indicated that the heat source depth was an anticlinal structure at a depth range of 3 km to 5 km. Based on results of interpretation of the magnetic and satellite images, ground follow-up targets were identified. Detailed ground geophysical surveys were carried out across the identified targets using the frequency-domain electromagnetic (EM), electrical resistivity tomography (ERT) and magnetic methods.
{List only- not presented}

The result of interpretation of magnetic data was combined with two-dimensional modeling EM and (ERT). Modeling of the electrical conductivity of the subsurface layers was constrained using existing borehole data. Interpretation of the airborne magnetic data revealed the presence of number of NE-SW striking lineaments that transect the metasedimentary rocks of the Soutpansberg Supergroup. In addition, these structures are manifested by a number of hotsprings that are aligned along major lineaments. The interpretation of 2D modeling of ERT data revealed a highly conductive layer with a depth ranging from surface to 40 m that may be attributed to elevated moisture content. Two-Dimensional modeling of frequency-domain electromagnetic data was carried out to delineate lateral and vertical variation of electrical conductivity. Electrical conductivity values in the range 50 mS/m to 100 mS/m were obtained, indicating the presence of water bearing zones or fractures. Results of the study have shown that hot water rises to the surface along near vertical faults or fractures.

Keywords: Aquifer, geophysics, groundwater, thermal spring

Abstract

The interactions between groundwater and the sewerage networks of the Lens-Liévin urban communities, located in the north of France, locally lead to non-compliance in the operation of the network and the wastewater treatment plants, questioning the city’s economic development policy. Indeed, the infiltration of groundwater inflow in the sewerage network could be the cause. Based on the piezometric measurements carried out in 2022, the surface elevation of the groundwater table is carried out using a kriging approach. The comparison of altitudes between network position and piezometry made it possible to identify the pipes most at risk of the infiltration of groundwater inflow and correspond to those indicated as non-compliant by network managers according to the national decree. Outside this period, the network vulnerability indicators are defined based on simulated piezometry by a 3D hydrodynamic model of the chalky hydrosystem (MARTHE code) established in a transient state. For two past extreme situations, the network would have been flooded at 1.20% in the dry period (1997) and up to 8.30% in the wet period (2001), highlighting the existence of a part of the network systematically flooded. Using the hydrodynamic model according to different prospective scenarios makes it possible to anticipate the actions deployed on the network to guide management and adaptation solutions. However, a modelling methodology that considers the feedback between the dynamics of the groundwater and the flows passing through the networks remains to be developed.

Abstract

The natural CO2 springs at the Bongwana area emanates from a number of sites along an 80 km long N-S trending fault known as Bongwana fault. CO2 rich groundwater is observed at a shallow depth in a borehole drilled for water supply parallel to the main fault. The geology along the entire fault length is characterized mainly by Dwyka Group sediments. The objectives of this study are to characterize the CO2 springs and assess their impacts on groundwater and surface water quality. To that end, existing literature and data were reviewed followed by the collection of groundwater and surface water samples at both CO2 emission and CO2 free streams, springs and boreholes around the length of the Fault zone. Major ions, trace elements and environmental isotopes analyses were carried out on the samples collected. EC, TDS, pH, Temperature, DO, Eh, ORP, total alkalinity, CO3 2- , HCO3 - ) were measured onsite. Acidic pH conditions, elevated TDS, EC and trace metals concentration were detected in all CO2 emission sites compared to CO2 free streams, springs and boreholes. These results clearly show the impacts of CO2 on groundwater and surface water quality within the vicinity of emission points. All the travertine cone springs located near Umtamvuna River are characterized by Na-Ca-Mg-HCO3 water types, while boreholes from shallow groundwater and river samples show Ca-Na-Mg-HCO3 types. The correlation among the deep CO2 rich groundwater parameters indicates that the major geochemical processes that could be responsible for the observed chemical composition are the precipitation of calcite and dolomite where their saturation indices (SI) range from 0.74 to 0.82 and from 0.24 to 1.35, respectively and the weathering of feldspars. Stable isotope (δ18O and δ2H) composition of the travertine cone springs shows a major negative shift from the meteoric water lines with δ18O and δ2H values ranging from -7.78 to -6.52 ‰ and -21.5 to -17.9 ‰, respectively. The stable isotopic composition of shallow groundwater reflects local and modern meteoric recharge. These observations indicate that the reservoir and source of recharge for the deep circulating groundwater are different from the shallow groundwater. It appears that natural CO2 emission along the Bongwana fault have impacted the ambient groundwater and surface water quality at the emission sites rendering it unfit for human consumption due to elevated concentration of dissolved constituents above safe drinking standards. The implication of this to CCS in South Africa is the fact that any unintended CO2 leakage into fresh groundwater and surface water resources from subsurface storage site can impact this already scarce resource. Therefore, strict scientific site selection protocols and CO2 leakage detections through properly designed monitoring systems are required to minimise the risk.

Abstract

POSTER The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Swallow holes and paleosinkholes play important roles in recharge in karst environments. Available sinkhole data and geotechnical percussion borehole logs are being collated to compile a detailed conceptual geological model. Inorganic chemistry data (2007 - 2012) as well as spring discharge volumes (2011 - 2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, stiff diagrams and temporal plots. Isotope data for the Upper and Lower Fountain springs are available for 1970 to 2007. ?D and ?18O data from the Upper and Lower Fountain springs are plotted against each other and the Global Meteoric Water Line. Other stable isotopes (including 14C and 3H) are also plotted as time trends and interpreted. Interpretation of the combined geotechnical, chemical and isotope data will aid in understanding the karst aquifer and the controls on groundwater system within and possibly between these compartments.

Abstract

Geothermal springs occur throughout the world and South Africa (SA) is endowed with several springs of this nature. Siloam and Tshipise are among the known scalding geothermal springs found in Limpopo Province. The optimal use of a geothermal spring is largely dependent upon its physical and chemical characteristics. Hence, there is need to understand the chemical processes controlling the springs. Hydrochemical characteristics of Siloam and Tshipise geothermal springs were undertaken for a period of six months May – December 2014. Water samples were collected from the springs and stored at low temperatures (+/- 4 °C) for analysis of hydrochemical characteristics. The results show that Siloam and Tshipise geothermal spring water is not suitable for drinking and irrigation due to high pH, high fluoride concentrations, high sodium absorption ratio (SAR), Residual sodium carbonate (RSC) and permeability index (PI) values. The water type found in Siloam and Tshipise were Na-Cl and Na-HCO3, respectively. The variations were probably due to the differences in fundamental changes in water chemistry and the geology. Plot (Ca+Mg) vs (HCO3+SO4) shows the distribution of geothermal water between silicate and carbonate weathering processes. The chloro-alkaline indices (CAI) 1, 2 calculated from the waters of the study area give negative values and this implies the presence of base-exchange reaction. Hence, sources of the geothermal springs were deep and could not significantly be affected by rainfall recharge. Therefore, major processes controlling the water quality are silicate weathering, mineral dissolution, cation exchange and inverse cation exchange.

Abstract

This study assessed the chemical and microbial quality of groundwater and potential risks to human health in Siloam Village, South Africa. Due to lack of access to potable water, residents in rural areas drill private boreholes within their homesteads without considering the potential sources of groundwater pollution. This exposes them to health risks associated with groundwater pollution. Water samples from 11 boreholes were collected from August 2013 to January 2014. pH and EC were measured using a multimeter and turbidity was measured using a turbidity meter. Non-metals and metals were analysed using Ion Chromatography and Atomic Absorption Spectroscopy, respectively. Colilert quanti-tray method was used to determine total coliforms and Escherichia coli. Descriptive statistics were used to determine the overall water quality status. Potential risks to human health were inferred based on Department of Water and Sanitation guidelines for domestic use. Water quality parameters found to have serious potential health effects on human beings were correlated with selected water quality parameters at a significance level (α) of 0.05 to understand the nature of correlation and possible sources of contamination. The study determined that nitrates and fluorides were the only parameters with excessively high concentrations in groundwater which are associated with health effects on human beings. Correlation of fluoride with calcium and pH indicated that further investigations are required to identify the local sources and fluoride control mechanisms in the study area. Correlation of nitrate with chloride and potassium indicated that faecal contamination and fertilisers are sources of nitrate pollution in the study area, though faecal contamination was the dominant source. Faecal contamination was confirmed from total coliforms and E.coli in most boreholes. The study identified the need to educate borehole owners in such villages of possible strategies to minimise groundwater pollution. 

Abstract

Water and contaminant transport processes in the vadose zone through preferential flow paths can be understood using environmental and artificial tracer methods. Further improvement in tracer techniques can be achieved by applying numerical modelling techniques of both water and solute transport, accounting for additional information on water movement and the matric potential of the vadose zone. The vadose zone is often ignored as a key component linking the land surface to the groundwater table, even though it acts as a filter that removes or stores potential contaminants. The water transit time between the surface and the groundwater table is frequently investigated using artificial tracers that normally show conservative behaviour. The main advantage is that the input function can be clearly defined, even though artificial tracers can generally only be applied over a relatively small area. The research is expected to provide insight into the selection and use of environmental and artificial tracers as markers for detecting and understanding the contaminant transport processes and pathways of contaminants in altered vadose zone environments (open-pit quarry). The impact is improved characterisation of the pathways, transport and migration processes of contaminants, and residence times, leading to the development of appropriate conceptual and numerical models of vadose zone flow processes that consider various contaminant sources. The principal aim is, therefore, to systematically examine the transport mechanisms and associated pathways of different environmental and artificial tracers in an open-pit quarry.

Abstract

VLF-Electromagnetic and geoelectric soundings were carried out at Ibuso-Gboro area via Ibadan, Oyo state. The objective was to delineate the groundwater potentials of the area. VLF-Electromagnetic method was adopted for reconnaissance survey with a view to locating bearing fractured zones in the basement bedrock. Sixteen (16) VLF-Electromagnetic profiles whose length ranges from 90-290 m were occupied with station interval of 10 m. The VLF-Electromagnetic results were presented as profiles. Linear features, suspected to be fractured zones, which were from the anomaly curves of the VLF-Electromagnetic were delineated in seven localities along the profiles. These localities were further confirmed by Vertical Electrical Soundings (VES). The seven Schlumberger Vertical Electrical Soundings (VES) were occupied with the electrode spacing (AB/2) varying from 1 m to 100 m with the total spread length of 200 m. The VES data were presented as sounding curves and interpreted by partial curve matching and computer assisted 1-D forward modeling. The results were presented as geoelectric sections, which showed the subsurface geoelectric images. Two out of the seven delineated linear features were test drilled and the fractured zones were met at depth range of between 25.0 m and 38.2 m beneath borehole (1) and 43.0 m and 52.1 m beneath borehole (2) for confined fractured. The pumping test analysis revealed borehole yield varied from 4.8 m3/hr and 5.2 m3/hr, where three (3) abortive boreholes had earlier been drilled. {List only- not presented} Key Words: VLF-Electromagnetic, Linear features, Geoelectric Soundings and Pumping test.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Approximately 982 km3 /annum of the world’s groundwater reserve is abstracted, providing almost half of all drinking water worldwide. Globally, 70% is used for agricultural purposes while 38% for irrigation.

Most water resources of South Africa are threatened by contamination caused by industrial, agricultural, and commercial activities, and many parts of the country face ongoing drought with an urgent need to find alternative freshwater sources, such as groundwater. Groundwater constitutes approximately 15% of the total volume consumed, hence it is an important resource that supplements insufficient surface water supplies across South Africa.

Very little attention has been afforded to understanding the anthropogenically altered vadose zone as a potential source or buffer to groundwater contamination. This is evident from few research studies that has applied multiple isotopic tracers to characterise this zone. Most subsurface systems in South Africa are characterised by fractures, whereby flow and transport are concentrated along preferential flow paths.

This study aims to evaluate the performance of different tracer classes (environmental and artificial) with one another, and create a better understanding of the hydraulic properties, mean residence time and transport mechanisms of these tracers. The influence of unsaturated zone thickness on recharge mechanisms will also be evaluated.

Site visits will be conducted for the proposed study areas, and the neighbouring sources of contamination will be assessed. The matric potential and unsaturated hydraulic conductivities will be measured using various techniques. Water samples will be collected and analysed for the various tracers from the vadose zone using gravity lysimeters including suction cups. Several tracers will also be injected into boreholes where samples will be collected to calculate tracer residence times (BTC’s) and further constrain the hydraulic properties of the vadose zone. All samples will be analysed, interpreted, and simulated using the numerical finite-element modelling code SPRING, developed by delta h. The software derives quantitative results for groundwater flow and transport problems in the saturated and unsaturated zones of an aquifer.

The research is expected to provide more insight into the selection and use of environmental and artificial tracers as markers for detecting, understanding the transport processes and pathways of contaminants in typical altered South African subsurface environments. The impact derived improved characterisation of the pathways, transport, and migration processes of contaminants, leading to groundwater protection strategies and appropriate conceptual and numerical models. The output from this study will determine the vertical and horizontal flux for both saturated and unsaturated conditions.

Abstract

Groundwater  is  a  reliable  freshwater  resource.  Its  location   underground  prevents  it  from evaporative  forces.  Thus  it  serves  as  storage  of  most  of  the  world’s  liquid  fresh  water.  Being enclosed in the ground it is not also easily contaminated. Since groundwater can be used wherever it exists without costly treatments, there is over-dependence on the resource. Though in the past it was mainly used by rural dwellers for domestic water supply, presently, due to effects of climate change on surface water resources, pressures of population growth leading to expansion of towns and cities, groundwater is also supplied for agriculture and industrial purposes. But, the resulting effect from these additional users is the vulnerability of groundwater resources to reduction and pollution. Its importance in sustaining livelihood and development has been highly credited and its management  is  looked  upon  as  a  prerogative.  To  enhance  groundwater  management  in  the Sandveld, a qualitative content analysis approach was used to evaluate six factors considered to be highly needed in groundwater management. This background was used to find out how institutional arrangement in South Africa facilitates or constraints groundwater management in the Sandveld, a highly groundwater dependent area in the West Coast of the Western Cape. The results showed that all  six  factors  are  present,  but  three  facilitate  groundwater  management  while  three  others constrain management. The community involvement which ranked first, is deficient. Thus, institutional weaknesses that need to be strengthened have been identified.

Abstract

Groundwater is a vital source of water for many communities in South Africa and elsewhere. Besides the changing climate, rapidly spreading invasive alien plants with deep roots e.g. Prosopis spp, pose a serious threat to this water source. Dense impenetrable thickets of Prosopis occur in the drier parts of the country mainly along river channels in the Northern, Eastern and Western Cape Provinces. Few studies have quantified the actual water use by this species outside of the USA where it is native. Consequently the impacts of Prosopis invasions on groundwater resources are not well documented in South Africa. The aim of this study was to quantify the actual volumes of water used by Prosopis invasions and to establish the effects on groundwater. Because deep rooted indigenous trees that normally replace Prosopis once it has been cleared also use groundwater, we sought to quantify the incremental water use by Prosopis over and above that used by indigenous trees in order to determine the true impacts on groundwater. The study was conducted at a site densely invaded by Prosopis at Brandkop farm near the groundwater dependent town of Nieuwoudtville in the Northern Cape. One in seven trees at the site is the Vachellia karroo (formerly A. karroo) which is the dominant deep rooted indigenous tree species. Actual transpiration rates by five Prosopis and five V. karroo are being measured using the heat pulse velocity (HPV) sap flow technique. Additional HPV sensors were installed on the tap and lateral roots to study the water uptake dynamics of the trees. Groundwater levels are being monitored in four boreholes drilled across the site while sources of water used by the trees (i.e. whether soil or groundwater) is being determined using O/H stable isotopes. For similar size trees, V. karroo had higher transpiration rates than Prosopis because of the larger sapwood to heartwood ratio in V. karroo than in Prosopis. However, at the stand level Prosopis consumed significantly larger amounts of water than V. karroo. This is because Prosopis invasions had a much higher tree density than V. karroo. From August 2013 to July 2014, annual stand transpiration for Prosopis (~ 372 mm) was more than 4 times higher than that of V. karroo (~ 84 mm). Tree water uptake was correlated to changes in groundwater levels (R2 ~ 0.42) with groundwater abstractions of ~ 2600 m3/ha/y by Prosopis compared to ~ 610 m3/ha/y for V. karroo. In addition, Prosopis showed evidence of hydraulic redistribution of groundwater wherein groundwater was deposited in the shallow soil layers while V. karroo did not. Results of this study suggest that clearing of Prosopis to salvage groundwater should target dense stands while less dense stands should be prevented from getting dense. {List only- not presented}

Abstract

The recent Western Cape drought initiated large scale development of the Cape Flats Aquifer (CFA) and refurbishment of the Atlantis Water Resource Management Scheme (AWRMS). Both aquifers are comprised of primary sediments of the Sandveld Group. Lithologies and depositional environments of the two aquifers are often directly compared and linked, but recent borehole drilling in these two aquifers is highlighting their inherent differences. The use of conventional mud rotary drilling techniques in these aquifers and changing nomenclature over time, has created uncertainty in their lithological character, leading to complications in borehole design and interpretation of test pumping results. Sonic drilling - Atlantis (20) and CFA (25) - was undertaken and incorporated with approximately 200 mud rotary borehole drill logs and geophysical survey results to investigate aquifer geometry and hydro-lithological characteristics. Results to date indicate the CFA is more heterogenous and has greater lateral variation compared to the Atlantis Aquifer. The CFA is interspersed with clay lenses, organic rich layers, calcrete and thick basal shell units. Whilst the Atlantis Aquifer displays a more homogeneous character with limited clay lenses, minor organic layers, interspersed calcrete and a near non-existent basal shell layer. Results of the sonic drilling have led to increased confidence in boreholes design, test pump analyses and numerical model results. The influence of CFA's heterogeneity on test pumping interpretation is displayed in the results through a variety of unconfined, confined, semi-confined and leaky type curves. Atlantis however, typically displays unconfined Neuman-type curves. Delayed gravity drainage signals, test pump duration, varying hydraulic conductivities of different lithological units and other boundary effects not only have an economic impact on test pump design, but can lead to the misinterpretation of test pump data which greatly influences planning for the aquifers' response to large scale abstraction and Managed Aquifer Recharge (MAR) alike.

Abstract

A new mining site situated near Kolwezi in the Democratic Republic of the Congo plans to develop a pit in phases over a period of six years. The mine requires dewatering volume estimates of the pit as well as a constant water supply to the plant. Hydrogeologic data available at the site during the scoping phase was limited to a few water level measurements and blowout yields from only five hydrological boreholes. Hydraulic properties from reports at neighbouring sites were extrapolated to the geological units at the site. The depth to water level at the site is about 20 m, with a planned final pit depth of approximately 180 m below surface.

Based on the limited data available an analytical approach to estimate the inflow into the mine was adopted. Analytical calculations proposed by Marinelli and Niccoli (2000) were used to estimate the inflow into the Pumpi mine pits. The analytical calculations consider recharge, depth of mining vertical and horizontal hydraulic conductivities. Drawdown evolution of pit dewatering are obtained by using different mining depths at different mine stages. The output results from the analytical calculations are the maximum extent of influence of the pit as well as the volume of water inflow into the pit. Limitations of the analytical equations are that they, amongst others, cannot consider complex boundaries.

Drilling and pump testing to obtain local hydraulic properties and boundary conditions are planned during the first quarter of 2013. The numerical model will be set up after the drilling and pumping tests, using the new data for calibration. The numerical model will contain as much of the physical layer definitions and potential internal boundaries as possible with model boundaries incorporated along  far  field  fault  zones  and  hydraulic  boundaries.  The  numerical model  should  improve the reliability of estimates of pit inflow and water supply to the plant.

The results between the analytical and numerical approaches can then be compared to improve future dewatering estimates with limited data. It is expected that the reliability of the analytical predictions will reduce after year 4, where the role of boundaries are expected to influence the drawdowns and related flow towards the pit.

Abstract

Water resources are a great concern in South Africa, more specifically the Western Cape. Therefore, a need has developed to understand the processes that may affect these precious resources. In the Western Cape large proportions of these resources are in the form of streams originating in untouched mountainous areas. However, as these streams continue towards the ocean they are faced by many threats. Alien vegetation, the destruction of river beds and abstraction from streams and boreholes threaten to dry up these resources. Additionally, pollution from fertilizers, sewage treatment plants as well as urban and industrial run-off contaminate these resources. The influx of pollutants, such as fertilizers, usually varies between seasons as it is only applied at certain times of the year. However, pollutant concentrations are not only linked to riparian land-use but are largely affected by climate changes as well. Processes such as surface run-off, along with first flush events and dilution control the nutrient concentrations in the streams. Although water is a renewable resource, it is not replaceable. This project will look at the streams’ self-purification potential. This refers to the processes within the rivers that lead to an in situ reduction of contaminants and pollutants. For example, contaminants and pollutants in rivers can be reduced by particle settling, plant and microbial uptake as well as chemical processes such as redox reactions and complex formation. For this project, pollution will be categorized into two different groups: nutrients and major ions from both point sources and non-point sources. The relevant nutrients analysed in this study are: nitrate, ammonium, phosphate and sulphate; and the major ions analysed are: Calcium (Ca), Sodium (Na), Potassium (K), Aluminium (Al), Iron (Fe) and Manganese (Mn). These will be analysed in conjunction with several physico-chemical parameters: temperature, pH, conductivity, total dissolved solids (TDS), salinity, oxidation reduction potential (ORP) and alkalinity. Analysing these parameters will allow us to measure the effects these processes have on pollution concentrations in the rivers and how climate changes facilitate these processes. For this study, the polluted Kuils River will be analysed and compared to the Steenbras River, which lacks major direct contaminants. This stream will this mainly serve as a ‘control’. Since this study will only be completed at the end of 2017, full conclusions have not been drawn yet. Therefore, this paper will highlight the findings thus far.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

Complementary use of electromagnetic frequency domain and electrosiesmic geophysical exploration methods in groundwater exploration in Zimbabwe.
Joseph M Zulu, Josrum Enterprises No. 129 A Fort Street, Albion Flats, 2nd Floor, Office Suite 5
Room 3, Bulawayo, Zimbabwe. Email Address: [email protected].
Abstract
Geophysical survey methods and divining are commonly used in groundwater exploration. In view of the current costs of drilling boreholes and fear of drilling a dry borehole, most people prefer the use of geophysical survey methods to have their boreholes sited. Some prefer the use of diving methods for initial siting and then confirmation of the identified site using geophysical survey methods. The key principle being complementarity of the methods to confirm the presence of water at the identified site. Electrical resistivity method and electromagnetic frequency domain methods are popular in ground water exploration in Zimbabwe, with electrical resistivity being the method of choice by many investigators. A new approach in groundwater exploration is proposed where complementarity of geophysical methods is exploited. A complementary approach of using geophysical methods in conjunction with geology, where two methods are used in investigating a site is proposed. In the study the latest technology in groundwater exploration, electrosiesmic survey method was used to complement the electromagnetic frequency domain method in various geological environments. Electromagnetic profiles were carried out on the target areas. Inversion was done on the collected and results presented as a pseudo section. Anomalies identified were further investigated using electrosiesmic sounding. The results of the sounding were presented in the form of a sounding curve. The subsurface layer thicknesses were calculated using forward modelling assuming the typical seismic velocity values of waves generated when passing through geological formations in the areas under investigation. The geology of areas studied include granite, greenstone, Kalahari sands, sandstones, mudstones and basalt of the Karoo stratigraphy. The approach produced impressive results. High yielding borehole sites were identified and successfully drilled in areas where it had been accepted that it was difficult to get water or in areas where it had been accepted there was no groundwater. Comparison of driller's log with models generated from geophysical survey results was also done.
Key words: electromagnetic, electroseismic, geology, complementarity, groundwater.
I acknowledge that this work has not been published elsewhere.

Abstract

This paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012

Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages.

The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer.

The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling.

Abstract

A conceptual hydrogeological and numerical groundwater flow modelling study is being undertaken around and within the proposed ESKOM Thyspunt Nuclear Site, located 120 km west of Port Elizabeth. The study aims to improve the understanding of the prevailing hydrogeological condition around the Thyspunt area. The area is characterized by folded and jointed geological conditions. The local geology comprises the Table Mountain Group (TMG) and the Bokkeveld Group rocks of the Cape Supergroup, and Quaternary to recent sand deposits of the Algoa Group. The study area receives mean annual precipitation (MAP) of 922.6 mm. The mean annual estimated evapotranspiration is 821 mm and the average annual recharge rate estimated using the Water Table Fluctuation method is about 71 mm. A robust conceptual hydrogeological model is developed through detailed aquifer characterisation including pumping test analyses, determination of groundwater occurrence, storage, and flow, hydrogeochemical and environmental isotope analyses. Groundwater occurs within intergranular of the Algoa Group and fractured quartzitic aquifers of the TMG. The depth to groundwater ranges from 4.5 to 28.9 m below ground level (b.g.l.) and though the local groundwater flow is complex, the general groundwater flow direction is from west to east, towards the Indian Ocean. The upper unconfined intergranular Algoa aquifer and the deeper semi-confined fractured TMG aquifer are characterised by wide range of hydraulic properties, including aquifer thickness (2.2 - 22.0 m and 18.0 - 138 m), hydraulic conductivity ( 4.5 - 19.1 m/d and 8.9x10-3 -1.58 m/d), transmissivity (108.3 - 275 m2/d and 0.4 - 44.0 m2/d), specific yield (1.5x10-2 - 0.1) and storativity (5.0x10-5 - 5.9x10-3), respectively. The main hydrochemical facies of groundwater in the shallow Algoa is Ca-Mg-HCO3 type and groundwater circulating in the deep TMG aquifers are Na-Cl type. Environmental isotope signatures (?2H, ?18O) results indicate groundwater - surface water interactions

Abstract

Water stress is frequently experienced in many parts of South Africa. To ensure the longevity of the country’s water resources, particularly groundwater, accurate quantification of the resource and prediction of the responses of each water resource unit to natural and anthropogenic stresses are necessary. To this endeavour, Simbithi Eco-Estate, located at Shaka’s Rock, KwaZulu-Natal requires the implementation of a Water Management Plan that includes a hydrogeological investigation. A hydrogeological conceptual model was developed for the eco-estate, based on which a numerical groundwater flow model was calibrated to simulate the impacts of different rates of groundwater abstraction within the estate. Hydrometeorological information, subsurface geology, hydraulic head, hydraulic characteristics of the aquifer units and hydrochemical data were analysed to develop a two-layer hydrogeological conceptual model. The conceptual model was used as the main input to the numerical groundwater flow model. The calibrated steady-state numerical model, developed using the finite-difference groundwater modelling code, MODFLOW, was used to determine the sustainability of groundwater abstraction within the eco-estate. During calibration, the hydraulic conductivities of the hydrostratigraphic units, and recharge were varied. The Model calibrated recharge was 5.5 % of the mean annual precipitation (MAP). The five abstraction scenarios considered were: Scenario 1, which is the sustainable abstraction rate determined from the analysis of pumping test data, and Scenario 2 to 5 which are assigned progressively increasing abstraction rates of Scenario 1, by a factor of 20%, 50%, 100%, and 1000%, respectively. The numerical model simulations indicate that Scenario 1 is most sustainable in terms of groundwater level drawdown and saltwater intrusion. The simulated groundwater drawdown progressively increased throughout the succeeding four scenarios.

The simulation results of the 5th scenario indicate that part of the model domain within the vicinity of the northern boreholes becomes dry and subsequent application of forward particle tracking on the simulation results predicts saltwater intrusion from the Indian Ocean towards the south eastern boreholes. It is accordingly recommended that groundwater resource development should be limited to below the abstraction rates of Scenario 4. Additionally, continuous monitoring of all boreholes within the eco-estate is recommended to generate time-series groundwater level information, which would be used to improve the predictive capabilities of the current steady-state model through a transient numerical groundwater flow model. To that end, an immediate establishment of a groundwater level and specific electrical conductivity (EC) monitoring network, equipped with data loggers, is recommended.

Abstract

Lake  Sibayi  (a  topographically  closed  freshwater  lake)  and  coastal  aquifers  around  the  Lake  in eastern South Africa are important water resources and are used extensively for domestic water supplies. Both the Lake and groundwater support an important and ecologically sensitive wetland system   in   the   area.   Surface   and   subsurface   geological   information,   groundwater   head, hydrochemical and environmental isotope data were analysed to develop a conceptual model of aquifer–lake interaction for further three-dimensional numerical modelling. These local geologic, groundwater head distribution, lake level, hydrochemistry and environmental isotope data confirm a direct hydraulic link between groundwater and the Lake. In the western section of the catchment, groundwater flows to the lake where groundwater head is above Lake stage, whereas along the eastern section, the presence of mixing between Lake and groundwater isotopic compositions indicated that the Lake recharges the aquifer. Stable isotope signals further revealed the movement of lake water through and below the coastal dune cordon and eventually discharges into the Indian Ocean. Quantification of the 14-year monthly water balance for the Lake shows strong seasonal variations of the water balance components. Recent increase in rate of water abstraction from the lake combined with decreasing rainfall and rapidly increasing pine plantations may result in a decrease in lake level which would have dramatic negative effects on the neighboring ecosystem and a potential seawater invasion of the coastal aquifer.

Abstract

Records review and field based methods were used to collect and interpret groundwater level and hydro- chemical data to characterise groundwater occurrence and flow system in the Heuningnes catchment, Western Cape Province of South Africa. Our research outcome indicates that the study area has alluvial and fractured rock aquifers. The groundwater system has a rainfall driven recharge mechanisms resulting in freshwater in higher altitudes situated in the northern and western parts of the catchment. Highly saline waters are found in low-lying areas. Few samples showing high salinity water exhibit a signature of seawater although in many instances the groundwater chemistry is by and large governed by the geological formation. Groundwater potentiometric surface map shows that the general groundwater flow direction is southwards. In relation to the surface water bodies, groundwater mainly flows towards the Nuwejaars River especially in the northern and north-west part of the study area resulting in fresh water in this part of the river. As this is an ongoing study, these preliminary findings provide the required insight for further analysis and investigation. Future work will involve carrying out aquifer hydraulic tests and collection of water samples for analysis of major ions and stable isotopes. Further discussion will wait for the validation of these results to inform a meaningful implication of such findings.

Abstract

Surface water has traditionally been the primary resource for water supply in South Africa. While relatively easy to assess and utilise, the surface water resource is vulnerable to climatic conditions, where prolonged periods of drought can lead to an over-exploitation and eventually water shortness and supply failure. Following the drought in 2018, more focus has been given to the groundwater resource to supplement the water supply in South Africa.

In the Saldanha Bay municipality the water supply is based on a combination of surface water and groundwater, with plans to supplement this with desalination and managed aquifer recharge (MAR) in the future. For an efficient and sustainable utilisation of the different water resources, a Water Supply Management System is developed that can be used to manage water mix from multiple resources. The system builds on top of a flexible WaterManager system developed for operation of complex water supply infrastructures, which in the study is extended by implementing operational rules for optimal management.

The operational rules provide recommendations for the day-to-day management, but also consider seasonal and long-term utilisations. To achieve this, the rules will rely on real-time monitoring data combined with results from hydrological modelling, providing estimated system response to selected scenarios to which the water supply must be resilient. In the present study the combined Water Supply Management System is developed and tested using synthetic data, which will be presented in the paper.

Abstract

The National Water Act (NWA) 36 of 1998 is regarded as providing a platform for an innovative way of managing the country's water resources. However, demands on the nation's water resources are intensifying as more and more catchments are coming under increasing stress. This may be attributed to significant changes in land-use and poor water resource governance which negatively affects the Environmental Water Requirement (EWR) flows of rivers in many catchments in South Africa. EWR refers to the flow needed by a river to sustain a healthy ecosystem. It is vital that the determined EWR flows are met and to ensure that all water-users receive their allocated water supplies. To ensure effective water management and water provision, it is critical to understand transmission losses considering that it is a key component of the water balance or hydrological budget. Quantitative investigations of transmission losses are necessary in order to calculate flows in a river and appropriately allocate water for different users. The Groot Letaba River situated in the north-eastern region of South Africa is a prime example of a river system where uncertainties in channel losses and gains are complicating effective water management. The Groot Letaba River is a model river where Strategic Adaptive Management (SAM) is currently being implemented to ensure adaptive and sustainable water resource management. This unique approach is facilitated by the institutional interaction between dam operators (from the upstream Tzaneen Dam) and stakeholders including Kruger National Park. However, there are huge uncertainties surrounding natural water losses (e.g. evapotranspiration) or gains (e.g. groundwater discharge) in the real-time model currently being used by dam operators. This study aims at attempting to narrow down the uncertainty by understanding and quantifying the natural hydrological processes between the two dominant land-uses along this river, i.e. agriculture and protected areas. In particular, the project will investigate the hydrological connectivity between groundwater and surface water along the Letaba River. This project will contribute significantly to management strategies by using a precise hydrological approach which will aid in improving estimates of water supply in the Groot Letaba River. Furthermore, this project could contribute to the development of appropriate water management strategies not only in the Letaba catchment but other similar Lowveld catchments as well.

Abstract

An electrical resistivity geophysical study was conducted at a historically contaminated site in northern Namibia. It is well known that fracture breaks/fault features are often good conduits for water and contaminants, leading to high flow velocities and the fast spread of contaminants in these conduits. The aim of the resistivity survey was to evaluate the preferential flow paths for groundwater and the distribution of contamination in the unsaturated zone and saturated aquifer.
The 2-D electrical resistivity imaging survey comprised 12 northeast-southwest trending traverses, with a nominal separation of roughly 200 m with traverse length ranging between 1,000 and 2,000 m and five (5) northwest-southeast trending traverses, with nominal separation of roughly 600 m with traverse length ranging between 900 and 2,400 m. A Wenner and Schlumberger electrode array with a 10 m electrode spacing configuration were employed, allowing for observation depths of about 75 to 80 m below surface. The 2-D electrical resistivity method was successful in discriminating between low and high resistivity subsurface features across the project site.
Borehole yields associated with the fault zones were high and confirmed the existence of preferential flow paths. The interpretation of contaminated subsurface areas (low resistivity/high conductive) of the unsaturated zone correlated with historic site activity and infrastructure related to the old return water dam, Old Tailings, plant area and coal stockyard, whereas the spatial distribution of the saturated zone seems to be more focused to the interpreted fracture breaks/fault features associated with the latter three areas. Groundwater quality data showed a good correlation between boreholes with high electrical conductivity and the zones of low electrical resistivity signatures. Preferential flow paths correlated well with interpreted fault zones from gravity data.

Abstract

In  South  Africa  salinisation  of  water  resources  by  dissolved  sulphates  resulting  from  acid  rock drainage (ARD) and metal leaching (ML) from surface coal mine spoils has a significant effect on water supply in the Gauteng Province. Predictions of mine water quality is required to select cost- effective rehabilitation and remediation measures to reduce future ARD and ML risks and to limit long-term  impacts.  A  load  balance  model  was  developed  in  Microsoft  Excel  to  simulated contaminant loads in a completely backfilled opencast mine in the Karoo Basin of South Africa after closure. The model calculated the balance between contaminant load into the pit water system from mainly pyrite oxidation processes in the spoils and load removed through decanting. Groundwater flow modelling data and simulated spoils seepage qualities for the mine site were used as input in the contaminant load calculations. The model predicted that the amount of contaminants added to the pit from spoils decrease considerably from the time of closure over a period of approximately 100 years. Thereafter the contaminant load decrease is gradual. This is due to a decrease in the volume of unsaturated spoils, as spoils at the bottom become permanently inundated as the pit fills up, thus limiting oxygen diffusion and oxidation. Cumulatively, the contaminant load gradually increases  in  the  backfilled  pit  until  the  onset  of  subsurface  and  surface  decant,  when  the contaminant load declines. This is due to removal of contaminants from the mine water system via decanting. Approximately 200 years after mine closure, 86% of the spoils are inundated. The model predicted that the quality of decanting water improves with time due to a decrease in load from spoils, removal of contaminants through decanting water and dilution effects of relatively clean groundwater inflows. Mass loads were used as input into the numerical groundwater model for the contaminant mass transport simulations to predict the migration of contaminant plumes with time. The geochemical model results assisted in developing conceptual water and waste management strategies for the opencast mine during operational and closure phase.

Abstract

Vacuum Enhanced Recovery (VER) has widely been applied in many hydrocarbon contaminated site to recover liquid hydrocarbon from the subsurface Hydrocarbon contamination to groundwater and soil is usually as results of leak or release. Different technologies and method exist to treat contaminated groundwater and soil through hydrocarbon. This paper focuses on the efficiency of VER as alternative method to the site where over 6 000 litres of petrol leaked to the subsurface over a period of time. The application of VER involves creating a capture zone in a particular monitoring well by increasing the hydraulic gradient towards that particular well or set of wells affected by hydrocarbon.

Abstract

Crystalline basement underlies much of Africa, and the groundwater within the shallow, weathered layer provides reliable drinking water for many people. This resource is key in adapting to changing climate, particularly in providing reliable water for drinking and smallscale irrigation. However, this requires higher yields from boreholes than currently abstracted. Renewed research is required to investigate sustainable yields from this type of aquifer and how it varies spatially. Recent work on crystalline basement rocks in Africa has shown that there are a number of important geological and geomorphological controls on shallow aquifer parameters; variability of geological properties and the impact of the landscape history is likely to have a strong control. Typically, the basement has experienced high metamorphic grades, which reduces intergranular porosity. Consequently, the aquifer relies on the presence of fault/ fracture zones; and the regolith’s depth and nature, which can have significantly higher porosity and permeability than the underlying bedrock. The interaction and variability of these key factors and climatic and landuse variables are likely to impact shallow aquifer productivity strongly. Here, we report on an ongoing study by UK and African scientists to understand how to represent the variability of geological, regolith and landscape factors across African crystalline basements. In tandem, a data-driven modelling approach is being used to examine these controls’ influence on groundwater yields. Continental-scale mapping of basement groundwater yield is planned, supporting those planning further aquifer development, including the growing use of solar-powered pumps.

Abstract

The alluvial aquifer in the Varaždin region has a long-standing problem with high groundwater nitrate concentrations, mainly from agricultural activities. Since groundwater is used in public water supply networks, it is important to ensure its sustainable use. The aquifer is also used to exploit gravel and sand, and the increased demand for this valuable construction material causes the excavation of gravel pit lakes, making groundwater more vulnerable. Although engineered processes can remove nitrate from groundwater, natural attenuation processes should be investigated to understand the nitrogen behaviour and additional mechanisms for groundwater remediation. Previous research has shown nitrate is a conservative contaminant in the critical zone. Aerobic conditions within an aquifer system prevent significant denitrification. Thus, nitrification is the main process controlling nitrogen dynamics in groundwater. Since groundwater and gravel pit lakes are hydraulically connected, and natural nitrate attenuation exists in these lakes, an additional mechanism for groundwater remediation is possible. This work used isotope hydrochemistry and groundwater modelling to investigate gravel pit lakes as possible sites to reduce nitrate concentration in groundwater. Based on the isotopic composition of groundwater and nitrate concentrations, water balance and solute mass balance were calculated, which made it possible to estimate the nitrate attenuation rate in gravel pit lakes. The gained retardation factor was applied to the groundwater flow and nitrate transport model through several scenarios to evaluate the contribution of gravel pit lakes in reducing the groundwater nitrate concentrations

Abstract

Hydrogeologists have moved past merely investigating for water supply and quantification of sustainable yields. In the 21st century, and with rapid urbanisation and climate change, hydrogeologists are expected to work in cross-disciplinary fields of geochemistry, aquatic biodiversity, surface water – groundwater interaction, groundwater economics, law and management. In addressing important hydrological parameters such as recharge, recharge rates, advection of contaminants and interflow, the role of the vadose zone becomes increasingly important. A series of case studies and physical models were used to evaluate the movement of water at variable saturation through media with primary, secondary and tertiary porosity. Scales of models varied based on different volumes of observation and relevance from discreet fractures to regional hillslopes.

Centrifugal acceleration was employed in some of the models to scale predetermined variables. Models included consolidation of heterogeneous soil successions, discreet fractures and their intersections, flow from soil into discreet rock fractures, and column testing of dolomite residuum. Advances are made in the qualitative and often quantitative assessment of interflow, soil-to-rock percolation, discrete fracture flow, and flow through dolomite residuum. Further to this, insight is gained into empirical quantification of hydraulic parameters through, for instance, the cubic law; the relevance of flow regimes (turbulent versus laminar) at various Reynolds numbers; and breaching of interfaces to promote vertical percolation of water stored in partially saturated geological media. Applications include improved understanding of pore water pressure distributions in media, induced seepage under consolidation, ingress water eroding soil into bedrock cavities resulting in sinkholes or surface subsidence, drainage of slopes and cuttings, water influencing infrastructure, indirect and localised recharge rates, aquifer susceptibility to contamination from surface, and urban hydrology in general.

The paper addresses some key findings and examples within the context of an extensive series of publications and research reports.

Abstract

Zachariashoek  catchment  was  one  of  the  study  areas  looking  into  the  hydrological characteristics  of winter rainfall catchments in the Western Cape. Nearly thirty years of historical data are available for the Zachariashoek area. This data include rainfall, gauge plate readings for the weirs, and water levels for the boreholes in the area. Numerous articles and reports had been written  about  the  research  done  in  the  area,  concentrating  mostly  on  the  effects  of  fire  on streamflow and vegetation. This article will look at patterns that can be observed from the data record and correlate the different data sets for the Zachariashoek sub‐catchment. It will use the data from the two weirs, three rain gauges and at least three of the boreholes that was drilled in this sub‐catchment.  The information gained from this comparison can then be used to evaluate possible future hydrological patterns and the interaction between the various components of the hydrological system.

Abstract

We contend that borehole drilling costs on the Zululand Coastal Plain, South Africa can be much reduced by assisting low cost drillers in drilling 6" diameter boreholes using light weight, maneuverable rigs with trained teams which are more cost-effective and provide optimal value for money invested over the lifespan of the borehole. The improved drilling package will allow local drillers to tap into the deeper more sustainable aquifer identified in the area and provide for better borehole construction. The remoteness of the rural population in the Maputaland area, northern KZN, South Africa, influences the degree of groundwater development. Rural water supply infrastructure is minimal and 40 per cent of the rural community is forced to rely on surface water as well as shallow, low cost drilling for water supply. A number of these low cost drillers were investigated to determine their expertise. Results showed that formal training in drilling technology is unavailable in the area. The inexperience of the drillers results in poor borehole construction. Currently low cost drilling is not cost effective as most of these boreholes collapse after a short time. The correct method of drilling in the area is by Direct Mud Rotary (DMR). Professional DMR drilling and borehole construction costs are in excess of US$ 125/m, unaffordable for poor households. We propose that with limited training and suitable equipment the local drillers can halve existing drilling costs, provide quality work as well as focus on good management practices. This will create jobs as well solve the pending water crisis in the area (and elsewhere in Africa).

Abstract

Recent advances in groundwater dating provide valuable information about groundwater recharge rates and groundwater velocities that inform groundwater sustainability and management. This talk presents a range of groundwater residence time indicators (85Kr, CFCS 14C, 81Kr, 36Cl and 4 He) combined with analytical and numerical models to unravel sustainability parameters. Our study site is the southwestern Great Artesian Basin of Australia where we study an unconfined confined aquifer system that dates groundwater from modern times up to 400 kyr BP. The study area is arid with a rainfall of <200 mm/yr and evaporation in the order of 3 m/yr. Despite these arid conditions we observe modern recharge rates in the order of 400 mm/yr. This occurs via rapid ephemeral recharge beneath isolated riverbeds where the sandstone aquifer directly outcrops. Groundwater dating and stable isotopes of the water molecule indicates that this recharge comes from monsoonal activity in the north of the continent that travel some 1500 kms. Furthermore, this is restricted to recharge in the Holocene.as we move down the hydraulic gradient groundwater “ages” increase and recharge rates dramatically decrease by orders of magnitude. We conclude that there has been a significant decline in monsoonal precipitation and hence recharge in the deserts of central Australia over this time. We present a couple environmental numerical model that describes how to estimate temporal recharge rates and estimates of hydraulic conductivity from groundwater age data that can be used for groundwater management.

Abstract

The abstract presents a 2D modelling approach alternative to a 3D variable saturated groundwater model of solute or heat transport at the regional scale. We use FEFLOW to represent processes in the saturated zone, coupled with various models describing the unsaturated zone. The choice of the latter depends on modelling needs, i.e. simulation of the movement of seepage water and nitrate fate with respect to crop rotation patterns and dynamic characteristics of heat gradients, respectively. The flexibility of coupling specialized models of different subsurface compartments provides the opportunity to investigate the effects of land use changes on groundwater characteristics, considering the relevant drivers in sufficient detail, which is important in regions with intensive anthropogenic activities. The coupling can be operated either with (direct coupling) or without (sequential coupling) including the feedback between the saturated and the unsaturated zones depending on the depth of the groundwater table below the surface. Thus, the approach allows for reasonable computational times. The Westliches Leibnitzer Feld aquifer in Austria (43 km²; Klammler et al., 2013; Rock and Kupfersberger, 2018) will be presented as an example highlighting the needed input data, the modelling workflow and the validation against measurements.

Abstract

The North-European country Denmark is in many ways different from the Republic of South Africa. Similarities also exist, for example the common ownership of underground resources. In Denmark, like in South Africa, groundwater forms a strategic resource for water utilization, and a coherent management approach is needed in both countries in order to secure a sustainable and balanced use, in which the wishes of different stakeholders are optimized. Denmark is solely depending on the use of groundwater for domestic, industrial and agricultural use. Therefore, an effective management scheme and new technologies have been developed in order to make groundwater assessments, delineating groundwater protection zones, water preservation, leakage detection, well field monitoring systems etc. This expertise forms the basis of the bilateral Strategic Water Sector Cooperation Programme (SSC), initiated in 2015. The programme consists of three main tracks, respectively focusing on urban water services and NRW, groundwater management, and water efficiency in industries. In addition to these, two cross-cutting tracks focus on water sector financing and the potential for research and innovation cooperation. The preliminary findings of the programme indicate that some of the Danish management approaches and technologies can be used in South Africa, either adapted or directly. In exchange, the South African experiences, amongst others, in how to handle drought, may be relevant in a future Danish context, where extreme weather situations, induced by climate change, is to be expected. 

Abstract

In the context of climate change, this work aims to model the piezometric levels of the foothill aquifer located in the middle-high Brenta river plain (Veneto, Italy) to support managing a groundwater system that provides drinking water for most of the Veneto Region. Using a Data-Driven approach, predictive Multiple Linear Regression Models were developed for the piezometric level at different wells, and scenarios of groundwater level evolution were achieved under dry periods. Results highlighted the high sensitivity of the aquifer to climate extremes, as well as the need to plan actions for mitigating the effects on such a strategic water supply system. Groundwater hosted in the foothill aquifer represents an important resource. However, these systems are highly sensitive to the variation of Meteo-climatic regimes. At the same time, the exploitations can lead to excessive groundwater drawdown and consequent threats of water scarcity. The Data-Driven approach adopted using long time series of meteorological, hydrometric and piezometric data can represent a valid example in these terms. The groundwater level evolution has been well-reproduced by these models. The equations describing models show the close dependence of groundwater from the Brenta River and the high sensitivity of the aquifer to meteo-climate regimes. Given this sensitivity, the forecast of groundwater level evolution under a dry period, similar to 2022, was performed. Results point out a progressive drawdown of groundwater level. These predictive models can be useful for local authorities to maintain these levels over specific critical values.

Abstract

Large parts of the City of Cape Town overlie a significant aquifer. Urban development proceeded without acknowledgement of the importance of this aquifer causing contamination in some areas and a lack of protection of recharge areas. Use of the aquifer for private domestic and industrial purposes has also largely continued unchecked. With the recent drought in Cape Town use of the aquifer dramatically increased, as did the City's understanding that the aquifer is a strategic resource to them. This paper presents the pros and cons of decentralised groundwater use. The current status quo of decentralised groundwater use in Cape Town, from basements to garden irrigation boreholes and to large-scale industrial users is presented, along with an assessment of the impact of the drought on groundwater availability. Recommendations are provided for how best to manage the challenges of decentralised groundwater use.

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

Aquifer Thermal Energy Storage (ATES) is increasingly utilised to optimise the efficiency of Ground Source Heat Pump (GSHP) systems. However, the criteria for selecting ATES over Unidirectional GSHP is not well-defined. Inappropriate selection of AETS can adversely impact the long-term viability and the GSHP system itself, as well as regional hydraulic and thermal sustainability due to adverse groundwater levels and temperature change. This is a concern in urban aquifers, where GSHP systems are increasingly common. There is a perception that ATES is always the most efficient; however, there is no clear definition of efficiency and how it can be readily assessed at the GSHP design stage. It is proposed and demonstrated herein that GSHP efficiency can be assessed by modelling borehole pumping in lieu of complex Coefficient of Performance calculations for the whole GSHP system. Borehole pumping is a more readily definable modelling outcome for comparing options at an individual site but is also a suitable proxy for comparing efficiency at different sites when given as a flow per unit rate of pumping. Operational efficiencies for ATES versus Unidirectional systems are presented using the pumping rate criteria for modelled scenarios. Here, three model inputs are varied: 1) the balance of heating and cooling, 2) the configuration of a single borehole pair across a hydraulic gradient and 3) the hydraulic gradient itself. These were assessed using coupled groundwater flow and heat transport modelling in Feflow to refine the Goldilocks Zone, the perfect balance, for these variables.

Abstract

Prevention of threats to the quality and quantity of groundwater supply is critical to ensure its sustainability. Several African studies have shown that contamination of aquifers is primarily caused by improper placement of land-based human activities. Therefore, adequate preventative measures are required to safeguard the water quality of African aquifers to avoid long-term deterioration. Spatially explicit, 3D numerical groundwater modelling is a common methodology to assess contaminant transport. However, model development is time-consuming and complex. Contrastingly, DRASTIC-L is a 2D, GIS-based aquifer vulnerability mapping technique. The method is simple to apply, but analyses are qualitative and subjective. The study aims to compare both methods and to combine their strengths using GIS overlay. Overall, aquifer vulnerability was determined using the DRASTIC-L method, while wellhead protection areas were delineated using steady-state numerical modelling. This study focuses on the Cape Flats area due to its rapid development and growing municipal water supply supplementation needs. DRASTIC-L mapping revealed that aquifers in the Cape Flats are highly vulnerable to contamination due to the region’s unconfined hydrogeological properties, shallow water table and high-risk land use types. Moreover, groundwater vulnerability mapping combined with the delineation of wellhead protection areas allows for reduced uncertainty in the contamination potential of delineated groundwater protection zones. As a result, this study highlights the need for overall resource protection of the Cape Flats aquifers and provides insights into mapping out potential source protection areas of existing water supply wells.

Abstract

The subject mine has a policy of avoiding groundwater inflow into the underground workings due to the impact on the mine operations. It has already implemented a significant mitigation measure by excluding shallow mining and a large pillar under the river that is present in the mining area. To assess the potential for groundwater inflows into the underground mine workings as a result of a planned expansion project, Environmental Resources Management (ERM) undertook numerical groundwater modelling based on a detailed geological investigation to define the proposed mining area into high, medium and low mining risk areas with respect to potential groundwater inflow. The conceptual definitions of the mining risk areas are: 

High Risk general groundwater seepage and inflow expected in the face and roof of the mining unit from numerous joints and fractures which is regarded as serious enough to permanently halt mining operations. 

Medium Risk possibility of limited point source groundwater inflow in the face and roof of the mining unit from sporadic selective joints and fractures. Not expected to halt mining operations. 

Low Risk no significant groundwater risk to mining operations expected.

The areas identified as being potentially at risk from groundwater inflow were determined using a combination of geological mapping, ground geophysics and percussion drilling that was incorporated into a numerical hydrogeological model. The study undertaken by ERM enabled the mine to incorporate the identified mining risk zones into the early stages of the mine planning, and allowed for a significant reduction in the size of the safety pillar under the river.