Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 575 results
Title Presenter Name Presenter Surname Sort descending Area Conference year Keywords

Abstract

Managed aquifer recharge (MAR), the purposeful recharge of water to aquifers for subsequent recovery, is used globally to replenish over-exploited groundwater resources and to prevent saltwater intrusion. Due to increased water shortage worldwide, there is a growing interest in using unconventional water resources for MAR such as reclaimed water or surface water impaired by wastewater discharges. This, however, raises major concerns related to pollution of our drinking water resources. MARSA is a new Danish-South African research project aiming at developing MAR technologies allowing a broader span of water resources to be used for MAR, including storm water, river water, saline water, and even treated wastewater. It is hypothesised that improved removal of organic pollutants, nitrogen species, antibiotic resistance, and pathogens can be achieved by establishment of reactive barriers or creation of different redox environments through injection of oxidizing agents to anaerobic aquifers during recharge. In MARSA we will carry out feasibility studies, as flow-through columns, first in Denmark and later in South Africa, to investigate the capacity of South African aquifer sediments to remove organic pollutants, nitrogen species, antibiotic resistance genes, and pathogens. Then, based on these studies, MAR options will be further investigated at field conditions in South Africa using real source water from MAR sites. For this presentation we will give an overview of the MARSA-project and show results from previous feasibility studies investigating the potential of reactive barriers to remove organic micropollutants and ammonium. These studies have shown that establishment of reactive barriers will cause oxygen depletion, but also more efficient ammonium and organic micro-pollutant removal. MARSA is funded by the DANIDA fellowship centre, Ministry of Foreign Affairs of Denmark. Project no. 20-M03GEUS.

Abstract

The water quality in the crystalline rocks of the Johannesburg and its environs has been severely altered by the mining activity. Due to freshwater scarcity and dependency of the people on the groundwater, it is important to understand the extent of hydrogeochemical footprint in the area. The water quality characteristic has been thoroughly assessed in the crystalline aquifers based on the input from hydrogeochemical characteristics and environmental isotopes. The results show that the calculated dilution factor for acid-mine decant is in the range of 68% as a result of interaction with surrounding fresh water. The SO4/Cl ratio has a wide range of values that falls between 0 an306.37, while that of Fe/Ca ratio falls between 0 and 5.59. High SO4/Cl values potentially indicate thinterference of acid-mine decant with the groundwater system traced through sulphate concentration. Similarly, a high Fe/Ca ratio also indicates the impact of acid-mine decant on the groundwater system where iron is traced with respect to calcium concentration. In this regard the ratios above 0,25 (with the assumption of 1 to 4 natural abundance for Fe:Ca in water in the area) could potentially represent acid-mine decant source.The results confirm that most of the water- supply wells have heterogeneous chemistry with distinctive hydrogeochemical footprint represented by abnormally high Fe, SO4 and Si as a result of acid-mine decant.

Abstract

2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims at investigating the area around the waste water ponds to determine the possibility of water percolation from the wastewater (oxidation) ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural and industrial activities. In this concern, 7 ERT profiles were measured around the wastewater ponds.

Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations (Ca+2, Na+, K+, Mg+2), major anions (Cl-, CO3-2, HCO3-, SO4-2), nutrients (NO2-, NO3-, PO4-3) and heavy elements (Cd, V, Cr, Zn, Ni, Cu, Fe, Mn, Pb). Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. Also, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater (ponds) samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. Also, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are NOT the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural and anthropogenic processes.

Abstract

Define chemical signatures from river waters collected in the Crocodile (West) and Marico Water Management Areas, South Africa. Samples were analysed for anion complexes using Ion Chromatography (IC) and major and trace element chemistry using quadrupole Inductively Coupled Plasma-Mass Spectrometry (q-ICP-MS). Results are used to define the various chemical signatures resulting from activities within the study area which include mining, agriculture, industry, residential and domestic, and recreational usage and to differentiate the 'background' that arises from the natural geological heterogeneity. The aim of this characterisation is to fingerprint the chemical signatures of various anthropogenic activities irrespective of background. Results from this investigation have been mapped using GIS to visualise the data across the study area. Based on the results, the contamination sources within the area can be identified and ranked in terms of their contribution to the total effective contamination received at Hartebeespoort Dam. {List only- not presented}

Abstract

The importance of groundwater in South Africa has become evident over the past decades, especially as pressure on surface water resources intensifies in response to increasing water supply demands. Research has significantly progressed on the shallow groundwater resources conventionally used for water supply, and leading on from this deeper groundwater resources have become a focus point as a future water source. This focus on deep aquifers is driven by new developments, such as shale gas development, injection of brines into deep aquifers, carbon sequestration and geothermal energy. The understanding of deep groundwater in South Africa is often limited due to insufficient data at these depths. To develop a body of knowledge on deep geohydrology in South Africa, an investigation on the currently available information was launched to assess potential deep groundwater resources. The investigation formed part of the larger WRC Project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). The geology of South Africa was reviewed from a deep groundwater perspective to provide an initial analysis of potential deep groundwater aquifers. The main potential deep aquifers were identified for further investigation using a ranking system, where Rank 1 shows a positive indication, Rank 2 shows some indication, Rank 3 shows a neutral indication, and Rank 4 shows a negative indication for deep groundwater systems. The Rank 1 geological groups include (in no particular order): the Limpopo Belt, Witwatersrand Supergroup, Transvaal Supergroup, Waterberg and Soutpansberg Groups, Natal Group, Cape Supergroup, Karoo Supergroup. In a number of the identified potential deep aquifers, the indicator for deep groundwater flow systems was the presence of thermal springs. Additionally, deep groundwater occurs below the traditionally exploited weathered zone, and the importance of fractured aquifers becomes paramount in the investigation of potential deep aquifers. In conclusion, three main components were considered for the investigation of potential deep aquifers systems, 1) geological groups; 2) thermal springs and 3) depth of fractures. These three components should be used holistically going forward to best characterise the potential deep aquifers of South Africa.

Abstract

The complexity of real world systems inspire scientists to continually advance methods used to represent these systems as knowledge and technology advances. This fundamental principle has been applied to groundwater transport, a real world problem where the current understanding often cannot describe what is observed in nature. There are two main approaches to improve the simulation of groundwater transport in heterogeneous systems, namely 1) improve the physical characterisation of the heterogeneous system, or 2) improve the formulation of the governing equations used to simulate the system. The latter approach has been pursued by incorporating fractal and fractional derivatives into the governing equation formulation, as well as combining fractional and fractal derivatives. A fractal advection-dispersion equation, with numerical integration and approximation methods for solution, is explored to simulate anomalous transport in fractured aquifer systems. The fractal advection-dispersion equation has been proven to simulate superdiffusion and subdiffusion by varying the fractal dimension, without explicit characterisation of fractures or preferential pathways. A fractional-fractal advection-dispersion equation has also been developed to provide an efficient non-local modelling tool. The fractional-fractal model provides a flexible tool to model anomalous diffusion, where the fractional order controls the breakthrough curve peak, and the fractal dimension controls the position of the peak and tailing effect. These two controls potentially provide the tools to improve the representation of anomalous breakthrough curves that cannot be described by the classical-equation model. In conclusion, the use of fractional calculus and fractal geometry to achieve the collective mission of resolving the difference between modelled and observed is explored for the better understanding and management of fractured systems.

Abstract

The significance of a reliable groundwater resource assessment is of growing importance as water resources are stretched to accommodate the growing population. An essential component of a groundwater resource assessment is the quantification of surface water–groundwater interaction. The  insufficient  amount  of  data  in  South  Africa  and  the  apparent  lack  of  accuracy  of  current estimates of the groundwater component of baseflow lead to the investigation of a new method. This applicability of this new approach, the Mixing Cell Model (MCM), to quantify the groundwater contribution to baseflow is examined to assess whether the method would be of use in further groundwater resource assessments. The MCM simultaneously solves water and solute mass balance equations  to  determine  unknown  inflows  to  a  system,  in  this  application  the  groundwater component of baseflow. The incorporation of water quality data into the estimation of the surface water–groundwater  interaction  increases the  use of  available  data,  and  thus has  the  ability to increase the confidence in the estimation process. The mixing cell model is applied to datasets from the surface water–groundwater interaction test site developed by the University of the Free State, in addition to data collected along the middle Modder River during a fieldwork survey. The MCM is subsequently applied to a set of quaternary catchments in the Limpopo Province for which there are available calibrated estimates of the groundwater component of baseflow for the Sami and Hughes models. The MCM is further applied to the semi-arid quaternary catchment D73F to assess the applicability of the mathematically-based MCM in a flow system within a regionally-defined zero groundwater  baseflow  zone.  The  results  indicate  that  the  MCM  can  reliably  estimate  the groundwater component of baseflow to a river when sufficient data are available. Use of the MCM has  the  potential  to  evaluate  as  well  as  increase  the  confidence  of  currently  determined groundwater baseflow volumes in South Africa, which will in turn ensure the responsible and sustainable use of the countries water resources.

Abstract

A coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood.

Abstract

The quality of groundwater is influenced by the chemistry of the rocks through which it migrates. The rock types in an area, particularly their weathered products and rainfall contribute greatly to the chemistry of groundwater. The present study examines the impact of bedrock on the chemistry of groundwater from shallow granite aquifers in Northern Nigeria. Groundwater samples from northeast (Hong), northwest (Zango) and Northcentral (Ogbomosho) were collected and analyzed for relevant water quality parameters. The concentration of fluoride (0.0-3.50) and some heavy metals such as iron (0.3-4.6), nickel (0.1-0.98), copper (0.0-.85), lead (0.001-0.4.0), Manganese (0.00-1.4) and arsenic (0.0-0.76) were slightly higher than their recommended maximum permissible limit in some locations and the observed anomalies can be attributed to geogenic influence as no visible industries are domiciled in these areas. Based on these signatures, the geochemical evolutions of groundwater from the three locations were quantitatively described by the interaction with rock-forming minerals released into the groundwater system through natural processes of weathering and dissolution in the flow-path. This is a testimony to the fact that groundwater can be grossly contaminated with critical elements by natural means. Analyses of rock samples from these locations revealed the presence of nacaphite, a fluoride rich mineral as well as arsenic, nickel, copper, lead and iron. The observed concentration ranges of fluoride and heavy metals are a reflection of the natural background concentration and a landmark in geochemical characterization of groundwater system in these areas. The enrichment trend is in the order of Zango > Hong > Ogbomosho. This implies that the granites in the area are composed of mineral containing these elements. Communities living in the granite/rhyolite dominated region where cases of fluorosis and heavy metal contamination have been observed should discontinue the use of groundwater from the area for domestic and drinking purposes. The Government should provide an alternative source of drinking water for the people.

Abstract

The manner in which municipal and industrial wastes generated are disposed in the urban areas in Nigeria is worrisome. The practice of dumping solid wastes in abandoned burrow-pits or valley and the discharge of liquid wastes directly on soils or surface water without any form of treatment has resulted in soil and water pollution. The continuous release of dangerous gases into the atmosphere by industries unabated has contributed to air pollution. These inadequate waste disposal techniques have created serious environmental and health challenges. Due to increasing population growth rate, urbanization, industrialization and economic growth, there has been a phenomenal increase in the volume of wastes generated daily and handling of these wastes have constituted an environmental problem. The need to manage these wastes in an environmentally-friendly manner that will guarantee safety of the soil and water resources lead to the present study. The newly designed waste management landfill incorporates advanced features such as complex multiple liner construction to facilitate organic decomposition and maintain structural integrity. The multiple protective layers and regular monitoring ensure that the waste management landfills exist in harmony with their surrounding environments and communities. These features that enhances maximum protection of soil and water from contamination by plume by decaying waste is lacking in the un-lined open waste dumps been practiced in the country. Pollution abatement, waste reduction, energy saving, health and economic benefits are some of the advantages of the newly designed sanitary landfill system.

Abstract

Soil and water pollution are major environmental problem facing many coastal regions of the world due to high population, urbanisation and industrialisation. The hydrofacies and water quality of the coastal plain-sand of part of Eastern Niger-Delta, Nigeria, was investigated in this study. Hydrogeological investigations show that the aquifers in the area are largely unconfined sands with intercalations of gravels, clay and shale which are discontinuous and, however, form semi-confined aquifers  in  some  locations.  Pumping  test  results  show  that  the  transmissivity  ranged  between 152.0 m2/day  and  2 835.0 m2/day  with  an  average  value  of  1 026.0 m2/day,  while  the  specific capacity varied between 828.0 m3/day and 15 314.0 m3/day with a mean value of 6 258.0 m3/day. Well-discharge  ranged  between  1 624.0 m3/day  and  7 216.0 m3/day  with  an  average  value  of 3 218.0 m3/day, while hydraulic conductivity varied between 3.2 m/day and 478.4 m/d with a mean value of 98.6 m/day. These findings indicate that the aquifer in the area is porous, permeable and prolific. The observed wide ranges and high standard deviations and mean in the geochemical data are evidence that there are substantial differences in the quality/composition of the groundwater within the study area. The plot of the major cations and anions on Piper, Durov, and Scholler diagrams indicated six hydrochemical facies in the area: Na-Cl, Ca-Mg-HCO3, Na-Ca-SO4, Ca-Mg-Cl, Na-Fe-Cl and Na-Fe-Cl-NO3. Heavy metal enrichment index revealed 12 elements in the decreasing order of: Fe > Ni > Cu > Zn > Mn > Cd > V > Co > Pb > Cr > As > Hg. The study identified salt intrusion, high iron content, acid-rain, hydrocarbon pollution, use of agrochemicals, industrial effluents and poor sanitation as contributors to the soil and water deterioration in the area. Saltwater–freshwater interface occurs between 5 m to 185 m, while iron-rich water is found between 20 m to 175 m. The first two factors are natural phenomenon due to the proximity of the aquifer to the ocean and probably downward leaching of marcasite contained in the overlying lithology into the shallow water table, while the last four factors are results of various anthropogenic activities domiciled in the area. The DRASTICA model, a modification of the DRASTIC model, was developed and used in the construction of the aquifer vulnerability map of the area. Modern sanitary landfill that ensures adequate protection for the soil and groundwater was designed and recommended to replace the existing  open-dumpsites.  Owing  to  the  monumental  and  devastating  effects  of  hydrocarbon pollution in the area, the need to eradicate gas-flaring and minimise oil spills in the area was advocated. Bioremediation and phytoremediation techniques were recommended to be applied in the clean-up of soils and water contaminated with hydrocarbon in the area.

 

Abstract

The CSIR has embarked on a study to investigate the potential for additional water in the West Coast, Western Cape through the application of Managed Aquifer Recharge (MAR). The benefits of MAR is that it may generate additional water supplies from sources that may otherwise be wasted with the recharged water stored in the aquifer to meet water supply in times of high demand. Determining recharge is the most important aspect of hydrological system. However, the accurate estimation of recharge remains one of the biggest challenges for groundwater investigators. Numerous studies have been conducted using geochemical methods to estimate and distinguish sources of recharge in different groundwater units of unconfined and confined aquifers internationally. The application of geochemical methods to produce accurate conceptual model describing natural recharge in aquifer units of Lower Berg River Region has not been widely published. The Lower Berg River catchment, consisting of 4 primary aquifer units (Adamboerskraal, Langebaan Road, Elandsfontein and Grootwater) will be used to demonstrate the applicability of such methods. The aim of the study is to estimate recharge in the lower berg river catchment, and develop a conceptual natural recharge model that will improve understanding of the aquifer system and be an indicator for water availability in the Lower Berg River Catchment. The objectives in developing the conceptual model includes establish groundwater recharge sources, groundwater flow paths, recharge mechanism and potential mixing of groundwater by using environmental isotopes; and obtain a reliable estimation of its recharge amount using the Chloride Mass Balance. As this study is still in progress, this publication will focus on reviewing literature and the outcomes envisioned from the project as to provide a complete understanding of the complex geology. This will lead to a better understanding of the functioning of natural recharge of the aquifer units in the Lower Berg River Catchment.

Abstract

Israel, S; Kanyerere, T

Globally, surface waters are severely unsustainably exploited and under pressure in semi-arid coastal regions, which results in increasing demand for groundwater resources. Currently, Cape Town and its neighbouring towns along the West Coast of South Africa are facing water shortage related problems. Managed Aquifer Recharge (MAR) is a nature based solution to improve groundwater security in drought prone regions such as the West Coast. The objective of this study was to design a groundwater monitoring network using a hybrid hydrochemical, geophysical and numerical modelling approach to assess and mitigate the potential impacts of MAR for the West Coast Aquifer System (WCAS). An Analytical Hierarchy Process method was used to perform a Multi-criteria analysis employed in GIS (ArcMap 10.3).

The factors of importance for optimized groundwater monitoring network design were based on available data and consultations with hydrogeologists and environmental scientist at stakeholder workshops. The factors which were considered included: elevation (m), geology, density of existing boreholes (wells/km2), electrical conductivity (mS/m), water rise (m), water level decline (m), transmissivity (m/day), saturation indices and lithological thickness (m). Factors were weighted based on their level of importance for the design of the groundwater monitoring network using Analytical Hierarchy Process (AHP). Priorities were calculated from pairwise comparisons using the AHP with Eigen vector method. The Consistency Ratio (CR) calculated was 5.2% which deems the weighting coefficients statistically acceptable. The results show that high priority monitoring areas occurs in the areas where there are fresh groundwater, high borehole density, elevated topography, higher recharge rates and decline in water levels are found. The monitoring network will include boreholes from the low priority areas to ensure that hydrogeological conditions are monitored and impacts are not worsened. Geophysical, numerical and chemical modelling aspects of the methodological approach will be incorporated into the initial groundwater monitoring network design.

 

Abstract

Underground coal gasification (UCG) is considered a cleaner energy source as its known effect on the environment is minimal; it is cheaper and a lesser contributor to greenhouse gas emissions when compared to conventional coal mining. It has various potential impacts but the subsidence of the surface as well as the potential groundwater contamination is the biggest concerns. Subsidence caused by UCG processes will impact on the groundwater flow and levels due to potential artificial groundwater recharge. The geochemistry of the gasifier is strongly depended upon site specific conditions such as coal composition/type and groundwater chemistry. Independent of the coal rank, the most characteristic organic components of the condensates is phenols, naphthalene and benzene. In the selection of inorganic constituents, ammonia, sulphates and selected metals and metalloids such as mercury, arsenic, and selenium, are identified as the dominant environmental phases. The constituents of concern are generated during the pyrolysis and after gasification as dispersion and penetration of the pyrolysis take place, emission and dispersion of gas products, migration by leaching and penetration of groundwater. A laboratory-based predictive study was conducted using a high pressure thermimetric gasification analyser (HPTGA) to simulate UCG processes where syngas is produced. The HPTGA allows for simulation of the actual operational gasifier pressure on the coal seam and the use of the groundwater sample consumed during gasification. A gasification residue was produced by gasifying the coal sample at 800 °C temperature and by using air as the input gas. The gasification residue was leached using the high temperature experimental leaching procedure to identify the soluble phases of the gasified sample. The leachate analysis is used to determine the proportion of constituents present after gasification which will be removed by leaching as it is exposed to external forces and how it will affect the environment. The loading to groundwater for the whole gasifier is then determined by applying the leachate chemistry and rock-water ratio to the gasifier mine plan and volumes of coal consumed. 

Abstract

South Africa currently ranks number nine in the world of the proved coal reserves that has been estimated to last for over 200 years. Coal constitutes about 77% of the primary energy needs in the country, with the Waterberg Coalfield estimated to host about 40% of the remaining South African coal resources. Coal deposits in the study area largely consist of shales, mudstones, siltstones and sandstones which host coal-containing clay minerals; quartz, carbonates, sulphides and the most abundant sulphide mineral is pyrite. Once mining begins, the sulphide minerals are exposed to surface which allows contact with atmospheric oxygen and water causes oxidation to take place, therefore causing acid-mine drainage (AMD). Acid-base accounting (ABA) was used to determine the balance between the acid-producing potential (AP) and acid-neutralising potential (NP). From the analysis the Net Neutralising Potential (NP-AP) was determined, which is one of the measurements used to classify a sample as potentially acid or non-acid-producing. Mineralogical analyses will be done by x-ray defraction (XRD) to define and quantify the mineralogy of the geological samples which can help in the management plan to minimise generation of acid. AMD does not only result in thgeneration of acid, but as well as in decreased pH values and increased values of specific conductance, metals, acidity, sulphate, and dissolved and suspended solids. Inductively coupled plasma analysis was done to determine the release of the heavy metals which can be detrimental to the environment. Sample analysis was done on the interburden, overburden as well as the coal samples. From results obtained, over 35% to 50% of the samples have an excess of acid potential which classifies the samples as having a higher risk for acid generation. About 30% to 40% of the samples have a higher neutralising potential; the rest of the samples have a medium acid risk generation. The water demand will increase as developments continue in the  area, with inter- catchment transfers identified as the answer to fill the gap of water scarcity. Acid mine drainage poses a big threat on water resources, both groundwater and surface water nationally, which might be less of a problem in the Waterberg because of the cycle of low rainfall in the area, but the potential of AMD cannot be neglected.

Abstract

In this study, a petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian Ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site consisted of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of a free-phase product in the coal-grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof  unsafe.  The  assessment  intended  identifying  the  source  of  product,  distribution  and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling  (soil  and  groundwater),  as  well  as  granulomeric  analysis  to  understand   grain   size distribution  within  the  soil  profile.  The  highest  concentrations  were  associated with the coarse sand layers with the highest permeability. Free-phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product from the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site  assessment  results  it  was  concluded  that  most  of  the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies.

Abstract

Records review and field based methods were used to collect and interpret groundwater level and hydro- chemical data to characterise groundwater occurrence and flow system in the Heuningnes catchment, Western Cape Province of South Africa. Our research outcome indicates that the study area has alluvial and fractured rock aquifers. The groundwater system has a rainfall driven recharge mechanisms resulting in freshwater in higher altitudes situated in the northern and western parts of the catchment. Highly saline waters are found in low-lying areas. Few samples showing high salinity water exhibit a signature of seawater although in many instances the groundwater chemistry is by and large governed by the geological formation. Groundwater potentiometric surface map shows that the general groundwater flow direction is southwards. In relation to the surface water bodies, groundwater mainly flows towards the Nuwejaars River especially in the northern and north-west part of the study area resulting in fresh water in this part of the river. As this is an ongoing study, these preliminary findings provide the required insight for further analysis and investigation. Future work will involve carrying out aquifer hydraulic tests and collection of water samples for analysis of major ions and stable isotopes. Further discussion will wait for the validation of these results to inform a meaningful implication of such findings.

Abstract

The geographic positioning of the Western Cape results in a Mediterranean climate - receiving majority of its rainfall during the winter months. A demand on the water supply throughout the year is typically met by storing water from winter rainfall in large dams. The Western Cape experienced a significant drought between 2015 and 2019. As a result, the supply dams have not been filled to capacity and drastic water restrictions had to be implemented. In the search for alternative water sources, groundwater exploration became a priority. Groundwater development projects were implemented rapidly in attempt to alleviate the implications caused by severe water restrictions and ultimately prevent running out of water. As a local groundwater institution, GEOSS got involved in several fast-tracked groundwater development projects for Department of local government, local municipalities, as well as other industrial and agricultural corporations. For obtaining the required water volumes, alternative measures were implemented. Previously under developed aquifers were targeted. In certain instances, in order to target the Table Mountain Group Aquifer (TMG), horizontal exploration drilling was conducted. The results of exploration and drilling yielded valuable learnings in terms of relevant hydrostratigraphy within the study areas. Additionally, there were learnings in terms of managing projects of this nature. In fast-tracked projects, careful management of the contractors, data collation (and storage) and public perception is critical to the success of the project. In this paper on water supply development for Municipalities, the various components of groundwater development are detailed along with relevant learnings from the recent emergency drought response measures.

Abstract

A Waste Water Treatment Works (WWTW) is being constructed at Pearly Beach. A geohydrological assessment was conducted to assess the potential discharge of treated effluent above and below the subsurface calcrete layers. A hydrocensus has been completed of the area to confirm there is no use of groundwater down-gradient of the WWTW and there is no likely impact on ecosystem functioning. Based on existing boreholes, infiltration above the calcrete layer in the vadose zone was found to be more efficient. A geophysical study was conducted to determine the optimal locations of boreholes for disposal of the treated effluent. The geophysics included an extensive electromagnetic (EM) survey. Resistivity data were acquired along a single resistivity profile to use as calibration for the EM data. This information has been correlated with borehole information from the monitoring boreholes that were drilled at the proposed WWTW site. From this information it would seem that the areas with higher conductivity (lower resistivity) can be targeted for drilling boreholes to dispose of the treated effluent. Also, the higher conductivity areas are interpreted as the areas with increased porosity. However, the change in conductivity could result from an increase in salinity or changes in calcrete content in the subsurface. The expected depth of the unconsolidated sand formations is generally less than 10 m based on the interpreted depth of the saturated formation from the resistivity data. Drilling will target the unconsolidated sands, as well as potential higher porosity zones beneath the calcrete. The geophysics data should then be calibrated with the information obtained from drilling the first borehole. The other sites can then be confirmed or reviewed based on the information. The boreholes are to be drilled soon and pump tested. The obvious concern is that the boreholes may clog, however measures will be put in place to minimise this risk. A detailed monitoring network will also be established. On-going monitoring is crucial to ensure the success of the scheme. The full conference paper will include the drilling and pump testing results and infiltration tests. This method of disposal needs to be taken into consideration especially if such schemes can be run successfully so that another option is available for the disposal of treated effluent. {List only- not presented}

Abstract

The town of Loeriesfontein, situated in the northern Cape, is entirely groundwater dependent, and is currently facing a serious water shortage. Low rainfall and the lack of storm events have resulted in groundwater levels dropping drastically. The current supply boreholes have been over abstracted and cannot meet the required demand. Water levels are close to pump depth for some of the municipal boreholes, and yields are decreasing. The town at one stage was trucking in water in order to supply its residents. Additional supplies are therefore urgently required.

A number of measures were implemented to monitor and manage the current demand and the limited supply. Thereafter GEOSS investigated the occurrence of groundwater within a 20 km radius of Loeriesfontein, and found that dolerite represents the primary target formation for groundwater exploration. Groundwater occurrence is found at the lower dolerite contact with the host rock, or in fractures in the dolerite itself. Based on an extensive hydrocensus, geophysical surveys, drilling and yield testing, the Rheeboksfontein area was identified as a suitable water source. Initially water was being trucked into Loeriesfontein from Rheeboksfontein and later an innovative arrangement of solar driven borehole pumps and reservoir pumps resulted in water being transported much closer to Loeriesfontein, reducing the transportation distances and costs.

During this first Phase of exploration the projected supply still did not meet the water demand and water quality targets. A number of high yielding boreholes were drilled, however the water quality was such that it would have required treatment and disposal of brine in that area is problematic. The extent of the exploration was then increased to a distance of 40 km from Loeriesfontein. A detailed hydrocensus was completed, followed up with further geophysical surveys, drilling and yield testing. Successful boreholes were drilled and the required demand and water quality standards could just be met. This finding is being verified with numerical modelling.

A process is underway to develop a mini-wellfield and then the environmental processes are being followed so that a pipeline can be built delivering water directly into the reservoirs at Loeriesfontein. On-going monitoring and maintenance is crucial to the long-term success of the groundwater supply.

Abstract

Ewart Smith, J; Snaddon, K; de Beer, J; Murray, K; Harillal, Z; Frenzel, P; Lasher-Scheepers, C

Various analysis techniques are available for assessing the groundwater dependence of ecosystems. Hydrogeological monitoring within the Kogelberg and greater Table Mountain Group (TMG) aquifer has provided various datasets from multiple scientific disciplines (hydrological, hydrogeological, geochemical, climatic, ecological and botanical). Using a variety of analysis techniques, and using the Kogelberg as a case study, this paper assesses the groundwater dependence of several ecological sites (wetlands and streams). The starting point is a sound geological and hydrogeological conceptualisation of the site. The approach involves conceptualisation and analysis within each scientific discipline, but also requires bridging between areas of specialisation and analysis of a variety of datasets. This paper presents the data and analyses undertaken and the relevant results as they pertain to several sites within the Kogelberg.

Abstract

The hydrological cycle consists of several components, with two of the major processes being that of surface water flows and groundwater flows. It has been proven before that these two components interact with each other and are often critical to the survival of the associated users and ecosystems, especially in non-perennial river systems. Non-perennial river systems have a limited number of studies, especially on its link to groundwater and the management of the system. Surface water and groundwater individually contribute to the quality, quantity and distribution of water available and the effect on down gradient users. Understanding these processes would help greatly in managing the non-perennial river/groundwater catchment systems along with its respective ecosystem. The aim is, therefore, to provide an understanding of the groundwater and surface water interactions in the research catchments of Agulhas, Touws and Tankwa-Karoo, and to understand the influence of management decisions related to groundwater use. To achieve this aim, conceptual models will be formulated for the different sites using borehole, geophysics, hydraulic and geochemical data collected in the research catchments. Prediction of the effects of groundwater use on the river systems, and river modifications on groundwater levels, will be done using numerical models to simulate the flow processes and the interactions. With the often strong reliability on groundwater in semi-arid and arid regions to support ecosystems and surface water pools, it is expected that the results will indicate a decrease in river flows (and existence of pools) with an increase in shallow aquifer groundwater abstraction. However, the regional flow of groundwater and surrounding faults and springs may have an influence large enough to counter the expected result.

Abstract

The effluent at the eMalahleni water reclamation plant is being processed through reverse osmosis which improves the quality of the mine water to potable standards. Brine ponds are generally used for inland brine disposal and this option has been selected for the eMalahleni plant. Limited capacity to store the brines requires enhanced evaporation rates and increased efficiency of the ponds. This study aims to establish the physical behaviour of the brine from the eMalahleni plant in an artificial evaporation environment. This includes the actual brine and synthetic salts based on the major components.

An experimental unit was designed to accommodate and manipulate the parameters that affect the evaporation rate of brines and distilled water under certain scenarios. Two containers, the one filled with 0.5M of NaCl and the other with distilled water were subjected to the same environmental conditions in each experimental cycle. Each container had an area of a 0.25 m² and was fitted with identical sensors and datalogger to record the parameter changes. The energy input was provided by infra-red lights and wind-aided electrical fans. This equipment used in these experiments was to simulate actual physical environmental conditions. 

The rate of evaporation was expected to be a function of humidity, wind, radiation, salinity and temperature. The experiments showed the type of salt and thermo-stratification of the pond to be significant contributors to the evaporation rate. The results also showed that the NaCl solution absorbed more heat than the water system. The difference in evaporation observed was ascribed to a difference in the heat transfer rate, which resulted in a higher temperature overall in the brine container than in the water container under similar applied conditions. This effect remained despite the introduction of 2 m/s wind flow over the tanks as an additional parameter. The wind factor seemed to delay evaporation due to its chilling effect upon the upper layers of the ponds, initially hindering the effective transfer of radiative heat into the ponds.

 

Abstract

Maphumulo B; Mahed G

Disastrous droughts sweeping across South Africa has led to the population turning towards groundwater as their primary source of water. This groundwater movement has increased the need for proper groundwater management in terms of both quality and quantity. Groundwater sampling is a crucial, and yet often overlooked, component of water quality assessment and management. This thesis evaluated the various groundwater sampling methods used within fractured rock aquifers in the Beaufort West region. Each sampling method was evaluated in terms of their precision and accuracy according to their hydrochemical results. Historical hydrochemical data from past reports was utilised to determine how various groundwater sampling techniques influence results. This helped gained a better understanding of the requirements required to correctly and accurately sample different water sources such as boreholes and windmills. These requirements include the importance of purging in order to remove stagnant water from windmills. By understanding these sampling techniques, it is possible to create a groundwater sampling protocol which should be followed when sampling fractured rock aquifer in order to ensure best possible results.

Abstract

The purpose of this study was to determine the optimal sampling methods for the analysis of radioactive material in fractured rock aquifers. To achieve this a number of data sets were used which span a 40 year period in and around Beaufort West. Well purging requires the pumping out of stagnant water. This step is crucial as the idle well water may not be representative of the entire aquifer. This step was found to be critical in the studies analysed and had a direct impact on the results. It is necessary to pump out the entire well volume and recommended to pump out at least two well volumes before sampling commences. Samples may also be taken prior to well-purging as a means of checking the effects of purging. Another important aspect for sampling is that of multi-level sampling, particularly in the case of boreholes which feature multiple fracture or aquifer interception points. Prior to sampling, sampling containers should be well washed and cleaned using HCl and rinsed with deionised water. This is done to remove any contaminants which may hinder laboratory analysis. It was found that the multilevel sampling method yielded the best results. Furthermore, the samples stemming from windmills also had good results. The evolution of sampling as a science has improved over the past 40 years, but a fundamental understanding of sampling as a science needs to be incorporated

Abstract

In order to obtain a better understanding of a groundwater system, it is very important to understand the recharge mechanisms of such a system. Several intensive investigations have been done, documenting the different methodologies to derive recharge. Most of these studies have been centred on the detailed analysis and description of isotopes, which are either a characteristic of the water, the rock, or both. The isotopes of strontium, in particular the isotopic 87Sr/86Sr ratio, is one of such methodologies applied to drive the sources of recharge. The Oshivelo management area is part of the greater Owambo Basin, with no major rivers flowing through the project area, while the Omuramba Owambo, which crosses the area from east to west, bears water only rarely. This rural area therefore heavily relies on groundwater resources. Towards the end of the 20th century, through exploratory drillings an artesian aquifer in the southern part of the Owambo basin was discovered. Several investigation and water supply boreholes have been drilled, with the major findings summarised: - In the late 1990s DWA (DWA, 1999) drilled 12 exploration boreholes and six observation boreholes, showing high yields ranging between 40 and 200 m?/h. One of the boreholes yielded saline water, classified under the Oshivelo Artesian Aquifer and it was recognized that there may be a risk of saltwater intrusion when beginning to exploit the aquifer. It was assumed that the aquifer receives local recharge from the Etosha Limestone Member aquifer in the order of 3.75 MCM/a and additional unquantified recharge from the Otavi Dolomite Aquifer. - In the early 2000s KfW funded a study of the Tsumeb area, including the development of a groundwater flow model according to which an amount of 31 MCM/a would be leaving the Tsumeb area at the northern model boundary, i.e. flow into the Oshivelo Region. - The DWA plans to supply the north-western Oshikoto Region with water from the KOV2 aquifer via a pipeline in order to overcome water shortages there and to become more independent from surface water supplies from Angola. Though, through the groundwater model, a first estimate of groundwater resources availability has been established, the source of recharge is yet to be determined, including the flow mechanisms. Without, this vital piece of information, a valuable groundwater resource may be eventually utilized unsustainably. This presentation will focus primarily on the determination of groundwater recharge mechanisms, which would produce additional input to refine the existing groundwater flow model, concentrating on the Oshivelo Aquifer system. Upon the successful completion of this investigation, the next step would then be to evaluate the groundwater flow model and use it for a proper groundwater management plan. {List only- not presented}

Abstract

Hydraulic behaviour of an aquifer is defined in terms of the volumes of water present, both producible and not (specific yield and specific retention), and the productivity of the water (hydraulic conductivity). These parameters are typically evaluated using pumping tests, which provide zonal average properties, or more rarely on core samples, which provide discrete point measurements. Both methods can be costly and time-consuming, potentially limiting the amount of characterisation that can be conducted on a given project, and a significant measurement scale difference exists between the two. Borehole magnetic resonance has been applied in the oil and gas industry for the evaluation of bound and free fluid volumes, analogous to specific retention and specific yield, and permeability, analogous to hydraulic conductivity, for over twenty years. These quantities are evaluated continuously, allowing for cost-effective characterisation, and at a measurement scale that is intermediate between that of core and pumping tests, providing a convenient framework for the integration of all measurements. The role of borehole magnetic resonance measurements in hydrogeological characterisation is illustrated as part of a larger hydrogeological study of aquifer modeling. Borehole magnetic resonance has been used for aquifer and aquitard identification, and to provide continuous estimates of hydraulic properties. These results have been compared and reconciled with pumping test and core data, considering the scale differences between measurements. Finally, an integrated hydrogeological description of the target rock units has been developed.

Abstract

Due to the recent drought in the Western Cape province of South Africa, surface water can no longer meet our current demand of water and as a result groundwater usage has increased. High iron concentration in groundwater is a problem which results in iron encrustation and iron clogging. This results in decreased borehole yields, decreased water quality and expensive treatments to remove iron encrustation or the drilling of entirely new boreholes. From both international and local literature there are two common factors which stand out which is that high concentration of iron in groundwater is a global issue, the second common factor is that the occurrence and influencing factors of high iron concentrations are site specific. Boreholes drilled for drought relief in health facilities across the Western Cape have reported increased concentrations of iron. Understanding of the geology, hydrogeology and hydrogeochemical conditions that cause the increased iron concentrations in groundwater at these specific locations is required. The objectives of this research project are to: 1) Assess spatial and temporal variations in iron and manganese concentrations; 2) Establish site specific processes that control the concentration of iron in groundwater; and 3) model the geochemical processes that impact iron levels in groundwater. These objectives will be achieved through historical groundwater quality data analysis, geochemical modeling, field work where samples will be collected and laboratory analysis of the samples collected. The information provided from this research project will allow for the effective management decisions to be made in terms of iron removal from groundwater and early preventative measures that can be made to ensure iron clogging and encrustation does not occur. The study is currently ongoing and there are currently no results available at this point however, at the time of the conference there will be information ready to share.

Abstract

The National Water Act (Act 36 of 1996) aims at redressing inequalities in water allocation. Historically, water resources were allocated to few white people who owned land and actively participated in agribusinesses. The need for widening access to water-related business was agreed and water allocation reformed (WAR) model was developed and implemented to re-dress such past inequality. However, limited progress has been registered because there is no real-time model to monitor, evaluate and report the progress of the four water entitlements. The current study focused on groundwater abstraction/use to assess the reported limited progress in WAR. Data report and active groundwater use from WARMS database were collected, filtered and analysed for parameters as set out in the water use license conditions. WARMS database contains information on parameters regarding water use in the water allocation process. Statistical techniques were utilised to establish change detection, trend analyses and correlations including multiple regression analysis in order to establish the magnitude and direction of relationships between factors. Preliminary results showed that several communities did not make significant improvement with regard to WAR. When population groups were compared, results showed that majority of black people lagged behind in accessing water resources for economic use implying that they will continue facing difficulties to participate in agribusiness-related activities. When WAR targets were assessed, findings showed such targets were not achieved. Further analysis showed that water use entitlements and participating in the economic activities are attached to land ownership. The current study recommends that a real-time model is required to monitor, evaluate and report the progress of four water entitlements and to fast tracking land reform tasks which promote the transfer of land from white people to black people because this has been viewed as one of the ways through which progress on water allocation reform process can be fast tracked.

Abstract

In the management of water resources especially groundwater resources, implementing existing regulations is one of the much needed aspects ensuring water security through the regulated use. However, such regulations are not regulated to ensure that they served the intended purpose in their original formulation. In South Africa, a study was carried out to assess the relevance and efficient of adhering to procedural requirements during water use licence application (WULA) process. Lived-experiences and observation methods were used to collect data. The department of water and sanitation was used as a case study. Interpretative analysis approach was used to provide the meaning on the analysed information. The WARMS database was accessed where the number of days that WULA process was extracted. The regulation No. 40713 about WULA process was analysed. The five-year-data prior and post the promulgation of regulation No. 40713 were extracted from WARMS database and evaluated in terms of the duration each application took to be processed for WULA. Data on water use for abstractions from all the regions were obtained from WARMS database and assessed. Dates when applications were submitted and when such applications were finalised were analysis per month and per years for temporal analysis. The number of entitlements received during the particular period and the number of applications recommended to be declined and issued were assessed using exploratory data analysis methods. Graphical method was adapted to increase results visualisation on water use entitlements. Key results showed that the process of WULA was generally slow and reasons were provided for such outcome. However, the temporal analysis revealed an increasing trend in the post promulgation of regulation No. 40713 suggesting that regulations when re-regulated serve its intended purpose. Although such findings are not conclusive but they inform a basis for re-regulating enforcement regulations in Southern African countries with issues similar to South Africa on water entitlement.

Abstract

Cadmium is a highly mobile and bioavailable non-essential element that is toxic to plants, and is an animal and human carcinogen (affecting the kidneys and bones in vertebrates). Since the late-1970s the effects of cadmium on the environment have become a global issue of concern, and many countries have conducted evaluations on the exposure of their populations to cadmium in phosphate fertilizer (a major non-point source of anthropogenic cadmium). A scoping project, funded by the Water Research Commission, aimed to review cadmium contamination of South African aquifer groundwater systems (predominantly) via phosphate fertilizer use. Topics reviewed included fertilizer composition and types, metal speciation, metal mobility in soil and groundwater systems, metal bioavailability, health and environmental effects, and local South African contamination case studies. A preliminary study site, namely the greater Hermanus region, was identified for trace metal and groundwater quality studies (which incorporated urban and agricultural areas in various hydrogeological settings). Hermanus was selected due to: 1) the discovery of cadmium concentrations of 20 ?g/l (in comparison to the SANS 241-1:2011 cadmium limit of 3 ?g/l) in a golf estate irrigation borehole, during drilling and test-pumping of the borehole at the end of 2012

Abstract

{List only- not presented}

Abstract

The 2011 Olifants River Water Supply Scheme (ORWSS) Reconciliation Strategy recommended that the Malmani Subgroup dolomites along the Limpopo-Mpumalanga escarpment be investigated as a potential groundwater resource for input into the ORWSS. The Department of Water and Sanitation - Directorate: Water Resource Planning Systems (DWS D: WRPS) in turn initiated a 2-year project that began in mid- 2016 to develop a feasibility plan for the groundwater resource development of the Malmani Subgroup dolomites within the ORWSS, with the main aims of the project being: 1) to secure groundwater as a long- term option to augment the water supply to the ORWSS by optimising surface water-groundwater conjunctive use; and 2) to determine the artificial recharge potential of the dolomitic (and/or other) aquifers within the ORWSS. The ~2000 m thick, Late Archaean (~2.6-2.5 billion year old) Malmani Subgroup is comprised of stromatolite-bearing dolomites and limestones (i.e. chemical sediments including chert, with some local clastic shale and quartzite), and forms part of the Chuniespoort Group (lower Transvaal Supergroup) with the overlying banded ironstones of the Penge Formation, and mudstones, dolomites and limestones of the Duitschland Formation. The Malmani Subgroup dolomites (and Transvaal Supergroup as a whole) have undergone deformation, fracturing/faulting and dyke intrusion by a range of tectonic events (including the Bushveld Complex intrusion and slumping, Vredefort meteorite impact, “Transvaalide fold-and-thrust belt”, Pan African Orogeny, Gondwana breakup and current East African Rift development), which have resulted in the development of a high yielding (>10 l/s sustainable yields and transmissivities of ~500-2500 m2 /day per borehole in the vicinity of large regional faults/fractures or dolerite intrusions) fractured dolomitic karst aquifer. Quaternary alluvial deposits (of up to 30-40 m thickness) also occur within valleys incised into the Malmani Subgroup at Fertilis (Mohlapitse River), Penge (Olifants River and associated tributaries), Ga-Maditsi (Steelpoort River), and along the Ohrigstad, Blyde and Treur River valleys. Groundwater quality within the Malmani Subgroup dolomitic aquifers in the ORWSS area is generally good (EC of <70 mS/m), however poorer water quality can be present (e.g. elevated EC, nitrates and trace metals) as a result of contamination from human settlements, agricultural irrigation, mining, and recharge from contaminated surface water e.g. the Olifants and Steelpoort Rivers. Current work completed/being undertaken as part of the project includes: identification of two preliminary regional hydrogeological targets and twelve related wellfield target zones (WFTZ); hydrocensus of selected DWS NGA and GRIP boreholes within these two preliminary targets; re-testing of selected high yielding GRIP boreholes at constant discharge rates of 20-25 l/s, and re-analysis of existing GRIP Malmani Subgroup data; macrochemical and dissolved trace metal analysis of groundwater chemistry from tested and drilled boreholes; development of a regional groundwater balance model to determine the groundwater potential per WFTZ; surface-groundwater interaction and artificial recharge assessments (the latter focusing on alluvial deposits overlying the Malmani Subgroup dolomites); identification of potential wellfield sites within the WFTZs based on structural analysis, measured aquifer parameters, groundwater potential and geophysics; numerical groundwater modelling; and drilling/testing of exploration/monitoring boreholes within selected wellfield sites.

Abstract

The original City of Cape Town (CCT) Table Mountain Group (TMG) Aquifer Feasibility Study and Pilot Project was initiated in 2002, the purpose being to evaluate the feasibility of augmenting the CCT's bulk water supply using groundwater from the TMG (specifically the fractured Peninsula and Nardouw Aquifers). CCT TMG groundwater exploration/development was fast tracked under the "New Water Programme" (NWP; from 2017-present) as a result of two interrelated water scarcity/demand factors, namely periodic drought (including the major 2015-2017 1:590-year event) and rapid urban growth. Initial NWP TMG groundwater development (including additional exploration via detailed geological mapping and heliborne geophysics) has occurred in the vicinity of the CCT-operated Steenbras Dam, in the form of a minimum 15-20 Ml/day wellfield scheme. The planned "Steenbras Wellfield" targets both TMG aquifers along the Steenbras-Brandvlei Megafault Zone on the southeastern limb of the Steenbras Syncline (which regionally occurs within the high groundwater potential Cape Fold Belt Syntaxis). Current drilling activities have included ultra-deep (up to 975 m depth, representing the deepest groundwater-specific boreholes outside of mining/resource activities in South Africa), wide diameter abstraction (using rotary air percussion, reverse circulation and hydraulic/water hammer techniques) and core exploratory boreholes into both TMG aquifers. Tested abstraction borehole yields range between 10-70 l/s, while artesian-discovery core holes into the Peninsula Aquifer from Steenbras towards Theewaterskloof Dam have surface pressures and flows of up to 800 kPa and 4 l/s respectively (from BQ-sized holes intersecting water strikes between 840-910 m). Further CCT TMG groundwater exploration and wellfield scheme development (potential total combined supply of ~50-150 hm3/a or ~140-400 Ml/day) is planned along major TMG structures within the Grabouw-Eikenhof and Theewaterskloof basins, Wemmershoek, Voelvlei, Berg River and the CCT South Peninsula region. This has, and will continue to include, monitoring of surface/groundwater-dependent ecosystems as a geo-ethical approach to minimise ecological/environmental impact.

Abstract

It has been shown over many years that the efficient management of water resources is almost impossible without a database containing historical and up-to-date information and data of high integrity. When it comes to groundwater the situation is even worse as groundwater was often not seen as a viable resource, and if it was used, then in many cases, it was poorly managed due to the lack of monitoring and poor data collection. This has changed in recent years as groundwater now forms a large part of the used water resources in several communities, towns and metros. Therefore, the need for properly managed groundwater data has increased tremendously, leading to urgent requirements for a water database in whatever form. Unfortunately off-the-shelf groundwater databases relevant to the South African market did not really exist for many years, while international packages are expensive and need a lot of adaptation to work for South African conditions. Therefore, most groundwater practitioners used various forms of database software and/or spreadsheets without much integrity leading to data hosted on various computers around South Africa, but not one central system available to be accessed by groundwater managers, scientists or even the public. The Water Research Commission therefore Initiated a research project for the "Development of an integrated Groundwater Database and visualisation tools for the City of Cape Town and Environs", a system that should be so versatile that it could also be applied in other metros, provincial or national offices. This research project will have a huge impact on water resources decision making for the City of Cape Town, as the recent drought has put the City water managers under immense pressure, which was increased by the need to start using more and more groundwater resources, especially for critical City and province institutions like hospitals, clinics and care centres around the Western Cape. The outcome of the project is a "complete" groundwater resources database with links to surface water and meteorological stations and a number of visualisation tools, including an online web-based mapping tool, which is fed by live data from the database and may be used even by the public for groundwater education purposes.

Abstract

The urban and rural communities sources of water for domestic and other uses come from groundwater in most parts of Ethiopia. But the groundwater is not free from challenge. Fluoride is one of those critical problems which are affecting the health of inhabitants of this corridor. There are places where the fluoride contents reach more than 10mg/l. groundwater Treatment plants, changing the water scheme source from surface water and related efforts have been made so far to alleviation such challenges. Fluoride affects bones and teeth by changing its color and easily affected to a number of health complication in the rift valley of Ethiopia. {List only- not presented}

Abstract

Governing groundwater in a way that does not deplete the source of water, nor cause any form of degradation is a global challenge. In South Africa, scholarship shows an extensive history of groundwater governance doctrines. Yet, the country’s groundwater remained a poorly governed resource. A recent regulatory regime change culminated in the National Water Act 36 of 1998 (NWA), which was specifically promulgated to ‘provide for fundamental reform of the law relating to water resources’. While the NWA provided an ideal opportunity for the judicious governance of South Africa’s groundwater, groundwater governance remain problematic. The regulatory focus is still very much on surface water. In fact, up to date, no regulations have been made to specifically protect vulnerable aquifers, or aquifers on which communities depend as a source of water supply, or aquifers that supports large scale agriculture. This paper sets out to achieve three objectives: to assess South Africa’s existing regulatory approach to the protection of groundwater; to identify gaps in the regulatory framework; and to explore regulatory opportunities to strengthen groundwater governance. The discussion follows a focussed approach, and hinges on the case of the dolomitic aquifer of Delmas. The Delmas case study is expected to show why policy makers and planners need to be more concerned about groundwater. It will also introduce, explain and propose an established international or foreign legal measure that may be incorporated to strengthen the regulatory status of the Delmas aquifer. The paper concludes with recommendations for strengthening South Africa’s groundwater regulation.

Abstract

Because the quality of groundwater is influenced by the host rock through which it moves, it differs on a site-specific basis, and is often naturally brackish or even potentially harmful to people. In spite of this, many practitioners incorrectly use the SANS 241 Drinking Water Standard as “compliance requirement” to compare groundwater quality against. This standard only applies to water that has been purified to be suitable for potable purposes at a water treatment works in terms of regulations made under the Water Services Act 108 of 1997. The only circumstance in which it could be used to compare the quality of natural groundwaters against, is where such groundwater is (to be) used, for potable purposes (with or without treatment), and then only to provide guidance on the level of treatment required to facilitate suitability for such domestic use, and not to determine possible ‘unacceptable’ levels of contamination. Therefore, the comparison of groundwater quality results against the SANS 241 Drinking Water Standard is not only a scientifically flawed practice, it has no basis in law. It is furthermore a scientifically flawed practice to refer to groundwater quality as ‘good’, ‘bad’, or ‘poor’, as it reflects a judgemental anthropocentric perspective that has no place in modern discussions on judicious environmental management and monitoring.

 This then raises the question, what are, or should the limit values be against which groundwater quality results should be compared to determine if it has been negatively affected by anthropogenic activity to such an extent that a scientifically substantiated claim can be made that the groundwater has been ‘polluted’, an allegation with criminal liability implications?

This paper aims to answer this question in the context of South African Framework law and policy, and propose a methodology to determine appropriate site-specific limit values for groundwater quality.

Abstract

As we look at the legislation set out in the driving policies and its guiding frameworks, the need for able institutions to implement strategies that promise and deliver social growth and development, are highlighted. It is only possible to define an 'able institution' through its ability to fulfil its function and enable stakeholders to be part of the decision-making process. (Goldin, 2013) It is this relationship with the collection of stakeholders, in particular strategic water resource stakeholders, their linkages as well as the identification of specific stakeholder issues, that are critically reviewed. The recent Groundwater Strategy (2010) identified key strategic issues/themes. Each chapter listed a number of well thought out recommended actions that address specific challenges in each theme. It is the need for strategic direction (to put these strategies in place "plans into action") and to articulate the specific vision in the right context to the different stakeholders, (internal as well as external) that requires thinking. It is also the uptake of this information by publics (social action and intervention) and the impact of new learning that will need to be measured. This paper will present on a study where the groundwater sector and all its stakeholders are strategically examined to understand the process of communal thinking in the current environmental conditions. It would draw from current communication practices, style, strengths, sector experiences and trends and also reference specific and unique experiences as with the recent WRC Hydrogeological Heritage Overview: Pretoria project. {List only- not presented}

Abstract

This paper outlines and presents out-of-the-box theories as examples to highlight some of the challenging restraints within the current legislative environment preventing scientists, engineers and other operational personnel to take theory into action and implementation. Key to this is the very static nature of the water use license (WUL)and associated process. The first example shows how integrated dynamic water modelling can be utilized to create an integrated water and waste management plan within the mining sector. The models developed using principles from Government Notice 704, the Best Practice Guidelines (BPGs) and the principles of water conservation and demand management. Ultimately it keeps clean and dirty water flows separate and optimises the use of dirty water in order to reduce raw/potable water off-takes through this process. The objective of these models are to optimise the water use and develop strategies to ultimately enable mines to optimize it's internal non-potable water resources therefor relieving pressure on the limited potable systems, as well as aiding surrounding communities, in which they operate, with potable water. Results from the model provides for 1 or 20 years simulation data that differs year-on-year based on numerous factors, i.e. rainfall, run of mine (ROM) feed and growing/declining surface run-off areas. The variability of the results makes it almost impossible to utilize within application documentation as it is too complex and it does not align with the application figures as required in the WUL process. This resulting in a fairly simplistic and sometimes unrealistic static model that is submitted as part of the application.

Abstract

POSTER Investigations have shown that receiving water bodies, which mainly include rivers, streams and the more complicated geohydrological system, are part of the primary end receivers of harmful contaminants from identified coal mining waste bodies. Some of these potential dangers include acid mine drainage (AMD) and sulphur mine drainage (SMD) which have dire effects on the surroundings. The need for a cost effective methodology to assess site hydrology and geohydrology, to understand the associated legal responsibility of contaminated streams and aquifers, is recognised. In the compilation of this paper the unique nature of South African legislation and policies are implemented in the development of a logical approach towards mine closure specifically in the field of groundwater assessments. Furthermore, this paper explores co-disposal of discard and slurry material and the environmental impact of co-disposed wastes is assessed. The unique geological attributes of the KZN coal fields and the geochemical research results found indicates that on its own discard has great potential to produce long term SMD and that slurry has lower SMD potential. Co-disposed results are promising and buffering against long term chemical changes are noted. The final product of this approach constantly considered site hydrogeology, related impacts, risks and liabilities. This gave more clarity on aspects related to the principles followed to identify objectives for sustainable mine closure and to adopted a philosophy of mine closure as a hydrogeological concept. Overview of methods that could be used for mitigation of polluted aquifers and a brief site specific application is discussed with the aim to achieve the key deliverable which focuses on methods to scientifically assess sources, pathways and receivers. Ultimately this process has led to the development of a logical approach towards mine closure for groundwater assessment and remediation in the typical anthracite mine environment.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

The main purpose of this paper is to present a case study where a water balance concept was applied to describe the expected groundwater safe yield on a sub-catchment scale. The balance considers effective recharge based on local hydrogeology and land cover types, basic human needs, groundwater contribution to baseflow, existing abstraction and evaporation. Data is derived from public datasets, including the WRC 90 Water Resources of South Africa 2012 Study, 2013-2014 South African (SA) National Land Cover and Groundwater Resource Assessment Ver. 2 (GRAII) datasets. The result is an attempt to guide a new groundwater user regarding the volume of groundwater that can be abstracted sustainably over the long-term.

Abstract

The main purpose of this paper is to present a case study where soil moisture and rainfall data were evaluated for engineered tree plantations, to understand the potential impact on vertical groundwater recharge. Soil moisture for probes within the tree plantation root zones and reference sites within the same soil types were evaluated, in context to site rainfall patterns. Water transfer from shallow to deeper soil zones for a dataset of 2 years are presented. Observations in terms of water movement in the root zone are made. A water balance is presented in the effort to conceptualise the impact on water transfer through the upper vadose zone and to quantify the significance in terms of potential vertical groundwater recharge reduction.

Abstract

Amongst groundwater users, the importance of a scientific borehole yield test is often highly underrated. From experience, a vast number of groundwater users make use of a method of yield testing known as the ‘farmer test’ or even just the air lift yield obtained when the borehole is drilled. In many cases, a scientific yield test is only conducted so that the borehole can be licensed with the Department of Water and Sanitation. A recent yield test undertaken near Stellenbosch demonstrated the importance of a scientific yield test, and the short comings associated with the “farmer method”. The case study pertains to a borehole where the air lift yield was much higher than expected for the area. The borehole was drilled into a high transmissivity aquifer of limited extent. As such, the yield testing was able to quite quickly detect and demonstrate impacts from aquifer boundary conditions. The case study demonstrates the need for hydrogeological conceptualization of the aquifer and flexibility in designing and modifying the yield test. The safe yield potential of this borehole was reduced from an expected 15 L/second to 0.5 L/second. Aquifer boundary conditions occur at most boreholes to some degree, and this case provides a demonstration of the effect on yield testing.

Abstract

Shale gas in South Africa can be a game changer for the Karoo and South Africa economy but it may have a devastating effect on the environment. The Karoo communities is highly reliable on groundwater for their stock, irrigation and also for domestic use. Knowing the process and the potential impacts of gas-well drilling and fracturing on shallow groundwater systems beforehand different appropriate studies can be done before any hydraulic fracturing can took place in South Africa. The biggest concerns with hydraulic fracturing is that the fracturing fluids will flow and discharge into shallow aquifers due to the high pressure used or the produced water mixed with deep saline water may discharge into the environment. This paper presents a baseline dataset that will be a reference point against which any future changes in groundwater concentrations can be measured. The Karoo basin with its numerous dolerite intrusions make it unique and different from other countries. These dolerite intrusions are associated with high yielding boreholes because of the fractured contact. The Karoo Basin may be under artesian conditions, which imply that any pollutant might migrate upwards in the Karoo. The understanding of key attributes for characterising groundwater of Karoo Aquifers is most importantly the depth to water level, the yield, and groundwater quality.. The understanding of these characteristics will help to close possible legislative loopholes regarding fracturing. This paper establish an interactive database to obtain full understanding of the hydrogeology of the Karoo to be able to quantify how much water is available in the Karoo and who is the users. Not only the quantity of the water in the Karoo, but also quality and age/origin by making use of different isotopes in conjunction with basic macro chemistry. This will allow for a broader picture before any unconventional gas mining in the Karoo takes place and it can be used to identify any future changes in groundwater quality and quantity of the Karoo aquifers.

Abstract

Three dimensional numerical flow modelling has become one of the best tools to optimise and management wellfields across the world. This paper presents a case study of simulating an existing wellfield in an alluvial aquifer directly recharged by a major perennial river with fluctuating head stages. The wellfield was originally commissioned in 2010 to provide a supply of water to a nearby Mine. Ten large diameter boreholes capable of abstracting ±2 000 m3 /hour were initially installed in the wellfield. The numerical groundwater flow model was used to evaluate if an additional 500 m3 /hour could be sustainably abstract from the alluvial aquifer system. A probabilistic river flow assessment and surface water balance model was used to quantify low and average flow volumes for the river and used to determine water availability in the alluvial aquifer over time. Output generated indicated that the wellfield demand only exceeded the lowest 2% (98th percentile) of measured monthly river flow over a 59 year period, thereby proving sufficient water availability. Conceptual characterisation of the alluvial aquifer was based on previous feasibility studies and monitoring data from the existing hydrogeological system. Aquifer parameters was translated into the model discretisation grid based on the conceptual site model while the MODFLOW River package was used to represent the river. Actual river stage data was used in the calibration process in addition to water levels of monitoring boreholes and pump tests results. The input of fluctuating river water levels proved essential in obtaining a low model error (RMSE of 0.3). Scenario modelling was used to assess the assurance of supply of the alluvial aquifer for average and drought conditions with a high confidence and provided input into further engineering designs. Wellfield performance and cumulative drawdown were also assessed for the scenario with the projected additional yield demand. Scenario modelling was furthermore used to optimise the placement of new boreholes in the available wellfield concession area.

Abstract

The proposed underground copper mine is one of the first Greenfield developments in the Kalahari Copper Belt. Groundwater resources in the region are scare and saline mainly due to minimal recharge. Management and simulations of groundwater inflows formed an integral part of the new mine design to reduce production losses caused by the inflows and to ensure a safe mining environment. The mine is located is a complex hydrogeological setting characterised by folding and deep water levels. Multiple fractured aquifers are associated with the mining area. Groundwater numerical modelling was performed in Groundwater Modelling System (GMS) using MODFLOW-NWT. Results of the scenarios were used as a management tool to aid in the potential inflow predictive simulations and dewatering management. The numerical model was calibrated by using field measured aquifer parameters and piezometric heads. Numerical simulations assisted in estimating average groundwater inflows at certain stages of the proposed mine development. The simulated mine groundwater inflow volumes were used as input into the design of the dewatering measures to ensure a safe mining environment.

Abstract

An electrical resistivity geophysical study was conducted at a historically contaminated site in northern Namibia. It is well known that fracture breaks/fault features are often good conduits for water and contaminants, leading to high flow velocities and the fast spread of contaminants in these conduits. The aim of the resistivity survey was to evaluate the preferential flow paths for groundwater and the distribution of contamination in the unsaturated zone and saturated aquifer.
The 2-D electrical resistivity imaging survey comprised 12 northeast-southwest trending traverses, with a nominal separation of roughly 200 m with traverse length ranging between 1,000 and 2,000 m and five (5) northwest-southeast trending traverses, with nominal separation of roughly 600 m with traverse length ranging between 900 and 2,400 m. A Wenner and Schlumberger electrode array with a 10 m electrode spacing configuration were employed, allowing for observation depths of about 75 to 80 m below surface. The 2-D electrical resistivity method was successful in discriminating between low and high resistivity subsurface features across the project site.
Borehole yields associated with the fault zones were high and confirmed the existence of preferential flow paths. The interpretation of contaminated subsurface areas (low resistivity/high conductive) of the unsaturated zone correlated with historic site activity and infrastructure related to the old return water dam, Old Tailings, plant area and coal stockyard, whereas the spatial distribution of the saturated zone seems to be more focused to the interpreted fracture breaks/fault features associated with the latter three areas. Groundwater quality data showed a good correlation between boreholes with high electrical conductivity and the zones of low electrical resistivity signatures. Preferential flow paths correlated well with interpreted fault zones from gravity data.