Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

The long mining history in Namibia has resulted in numerous abandoned mines scattered throughout the country. Past research around the Klein Aub abandoned Copper mine highlighted environmental concerns related to past mining. Considering that residents of Klein Aub depend solely on groundwater, there is a need to thoroughly investigate groundwater quality in the area to ascertain the extent of the contamination. This study made considerable effort to characterise groundwater quality using a comprehensive approach of quality assessment and geostatistical analysis. Onsite parameters reveal that pH ranges between 6.82-7.8, electrical conductivity ranges between 678 - 2270 μS/cm, and dissolved oxygen ranges between 1.4 -5.77 mg/L. With an exemption of two samples, the onsite parameters indicate that water is of excellent quality according to the Namibian guidelines. The stable isotopic composition ranges from −7.26 to -5.82‰ and −45.1 to -35.9‰ for δ18O and δ2H, respectively—the groundwater plots on and above the Global Meteoric Water Line, implying no evaporation effect. Hydrochemical analyses show bicarbonate and chloride as dominant anions, while calcium and sodium are dominant cations, indicating groundwater dissolving halite and mixing with water from a recharge zone.

The heavy metal pollution index of the groundwater is far below the threshold value of 100, which signals pollution; it contrasts the heavy metal evaluation index, which clustered around 3, implying that the heavy metals moderately affected groundwater. Copper, lead and Arsenic were the main contributors to the values of the indices.

Abstract

The basis of a hydrogeological conceptual model is the comprehensive characterisation of the groundwater system. This ranges from discrete hydraulic feature analysis to local-scale testing to integrated regional-scale aquifer system conceptualisation. Interdisciplinary data integration is critical to each level of characterisation to gain a realistic, yet simplified representation of the hydrogeological system based on various data sources. Incorporation of geological datasets, including (but not limited to) structural and lithological mapping, geotechnical core logs and geophysical surveys, in conjunction with a tailored selection of hydraulic testing techniques, are often underutilised by hydrogeologists. Yet, the contribution of these alternative hydraulic datasets cannot be overstated.

A recent hydrogeological assessment and feasibility study forming part of the planned expansion project for a base-metal mine in the Northern Cape, South Africa, offers an ideal, practical example. The localised nature of the project area and the inherently complex geological setting required a more detailed conceptual model and hydrostratigraphic domaining approach. Highly heterogeneous stratigraphy and strong structural aquifer controls necessitated characterisation by reviewing, testing and analysing various datasets. Exploratory core datasets, hydraulic aquifer tests, geological and downhole geophysical datasets, and statistical Rock Quality Designation—hydraulic conductivity relationships were interpreted to produce meaningful, refined hydraulic process identifications. A comprehensive local groundwater framework, discretised into various hydrostratigraphic units and structural domains with specified hydraulic parameters, was incorporated to provide a novel, more robust conceptual understanding of the unique hydrogeological system.

Abstract

Water scarcity has driven many countries in arid regions, such as Oman, to desalinate seawater for freshwater supply. Episodic problems with seawater quality (e.g., harmful algae), extreme weather events that affect energy supply and hence the desalination process have nurtured the urgent need to store desalinated seawater (DSW) in the aquifers for use during emergency and peak demand time. Aquifer Storage and Recovery (ASR) using injection wells is a possible strategic option for Oman Water and Wastewater Services Company (OWWSC) to augment aquifer storage using excess desalinated water during low demand times. ASR strategically serves as a water supply backup to optimize production capacities against seasonal demand patterns. The technical-economic feasibility of implementing ASR schemes was investigated in Jaalan, Oman, using hydrogeological and geophysical field measurements, groundwater flow and hydraulic modelling, and economic analysis. Analysis of modelled scenarios results revealed that the Jaalan aquifer is suitable for storing and recovering about 4,000 m3 /hr in 2045. Various well field designs have been tested and optimized numerically using MODFLOW 6, showing that with 160 dual-purpose wells, 7.9 Mm3 can be injected and abstracted within the constraints defined for a robust and sustainable ASR system. Simulations with the density-dependent flow model (MF6 BUY) show that the injected volume can be fully recovered considering the drinking water quality standard. Other sites were also studied. ASR capacity was found to be site-specific, and the groundwater developments near the ASR site governed its feasibility

Abstract

The geochemical study of deep aquitard water in the southern Golan-Heights (GH), Israel, reveals the complex paleo-hydrological history affected by the intensive tectonic activity of the Dead Sea Rift (DSR). The sampled water collected from new research boreholes exhibits relatively high salinities (2,000-10,000 mg Cl/L), low Na/Cl ((HCO3 +SO4 )). δ18OV-SMOW and δDV-SMOW values are relatively depleted (~-7‰ and ~-42‰, respectively), while 87Sr/86Sr ratios are enriched compared to the host rocks. Lagoonary brines with similar characteristics (excluding the water isotopic compositions) are known to exist along the DSR. These brines formed 10-5 Ma ago from seawater that transgressed into the DSR and subsequently underwent evaporation, mineral precipitation and water-rock interactions. These hypersaline brines intruded into the rocks surrounding the DSR and based on the current study, also extended as far as the southern GH. Further, following their subsurface intrusion into the GH, the brines have been gradually diluted by isotopically depleted freshwater, leaving only traces of brines nowadays. The depleted isotopic composition suggests that the groundwater system is recharged at high elevations in the north. It is also shown that variable hydraulic conductivities in different formations controlled the dilution rates and subsequently the preservation of the entrapped brines. The paleo-hydrological reconstruction presented here shows that the flow direction has reversed over time. Brines that initially intruded from the rift have since been gradually flushed back to the rift by younger fresh groundwater.

Abstract

Natural processes (e.g., El Nio) and anthropogenic activities (e.g., land-use modification and groundwater abstraction) drive local and global hydrological changes. Consequently, these changes threaten the role of wetlands in the hydrological and ecological functioning of a catchment. Verlorenvlei is a vulnerable RAMSAR-listed estuarine lake located on the west coast of South Africa in Elands Bay. Since the 2015-2018 Western Cape drought, Verlorenvlei has experienced drier-than-normal conditions with less rainfall, negatively impacting the surrounding ecology. Seasonal and spatial changes of the water sources (e.g., rainfall, surface water, and groundwater) supporting the wetland and the interconnectivity between these reservoirs were investigated using O/H stable isotopes and hydrochemistry analysis. The study collected event-based rainfall (57 samples), surface water (18 samples), and groundwater (108 samples) in February, April, and June 2022. Stable isotope ratios and hydrochemistry indicate that groundwater outside the watershed (topographically and surface water delineated) supports the wetlands, suggesting that local and regional groundwater flow systems influence the Verlorenvlei. Furthermore, the Verlorenvlei is subjected to high evaporation compared to other surface waters and, in return, is reliant on baseflow supporting its hydrological functioning. The Krom Antonies and Hol sub-catchments exhibit overlapping groundwater isotope ratios and water types compared to the Verloren sub-catchment, suggesting a disproportionately high groundwater contribution from both sub-catchments into the wetland. Understanding Verlorenvlei’s water balance is necessary to improve ecological reserve determination studies to help ensure environmental and socio-economic sustainable water use

Abstract

Understanding the sensitivity of groundwater resources to surface pollution and changing climatic conditions is essential to ensure its quality and sustainable use. However, it can be difficult to predict the vulnerability of groundwater where no contamination has taken place or where data are limited. This is particularly true in the western Sahel of Africa, which has a rapidly growing population and increasing water demands. To investigate aquifer vulnerability in the Sahel, we have used over 1200 measurements of tritium (3H) in groundwater with random forest modelling to create an aquifer vulnerability map of the region.

In addition, more detailed vulnerability maps were made separately of the areas around Senegal (low vulnerability), Burkina Faso (high vulnerability) and Lake Chad (mixed vulnerability). Model results indicate that areas with greater aridity, precipitation seasonality, permeability, and a deeper water table are generally less vulnerable to surface pollution or near-term climate change. Although well depth could not be used to create an aquifer vulnerability map due to being point data, its inclusion improves model performance only slightly as the influence of water table depth appears to be captured by the other spatially continuous variables.

Abstract

ue to public health or environmental concerns, performing tracer tests in the field by injecting pathogenic microorganisms or contaminants of emerging concern into groundwater is not permitted. Therefore, examining the effects of preferential flow processes on these contaminants under controlled saturated conditions must be done in the laboratory, but the resulting transport parameters cannot be directly applied to field-scale groundwater models. This research considers how an upscaling relationship can be found using a colloidal tracer and three different scales: small laboratory columns (0.1 m scale), a large intact core (1 m scale), and a real-world gravel aquifer (10 m scale). The small columns were filled with gravel from boreholes at the field site, an alluvial gravel aquifer close to Vienna, Austria. The mesoscale consists of an undisturbed gravel column from a gravel pit near Neuhofen an der Ybbs, Austria. Results showed that a certain pattern emerges after an initial scale-dependent threshold, regardless of differences due to the small columns being repacked with aquifer material and the large column and field site being “undisturbed”. In this way, the mesoscale column allows us to gain insight into upscaling processes by incorporating an in-between step when comparing groundwater transport at the column- to the field scale.

Abstract

The Bauru Aquifer System (BAS) is a significant source of water supply in the urban area of Bauru city. Over the last decades, BAS has been widely affected by human activities. This study evaluates the nitrate plume in groundwater from 1999 to 2021 and how it relates to urbanization. The methods used were analysis of the data of 602 wells, survey of the sewer network and urbanization, and reassessment of nitrate concentration data. The seasonal analysis of 267 groundwater samples allowed the identification of concentrations up to 15.1 mg/L N-NO3 - mainly from the area’s central region, where the medium to high-density urban occupation dates back to 1910. Otherwise, the sewage system was installed before 1976. The reactions controlling the nitrogen species are oxidation of dissolved organic carbon, dissolution of carbonates, mineralization, and nitrification. Wells, with a nitrate-increasing trend, occur mainly in the central and northern regions, settled from 1910 to 1980-1990, when no legislation required the installation of the sewage network before urbanization. In turn, wells with stable or decreasing nitrate concentrations occupy the southwestern areas. Over the years, the concentrations of these wells have shown erratic behaviour, possibly caused by the wastewater that leaks from the sewer network. The bivariate statistical analysis confirms a high positive correlation between nitrate, sanitation age, and urban occupation density, which could serve as a basis for the solution of sustainable groundwater use in the region. Project supported by FAPESP (2020/15434-0) and IPA/SEMIL (SIMA.088890/2022-02).

Abstract

Recent advances in groundwater dating provide valuable information about groundwater recharge rates and groundwater velocities that inform groundwater sustainability and management. This talk presents a range of groundwater residence time indicators (85Kr, CFCS 14C, 81Kr, 36Cl and 4 He) combined with analytical and numerical models to unravel sustainability parameters. Our study site is the southwestern Great Artesian Basin of Australia where we study an unconfined confined aquifer system that dates groundwater from modern times up to 400 kyr BP. The study area is arid with a rainfall of <200 mm/yr and evaporation in the order of 3 m/yr. Despite these arid conditions we observe modern recharge rates in the order of 400 mm/yr. This occurs via rapid ephemeral recharge beneath isolated riverbeds where the sandstone aquifer directly outcrops. Groundwater dating and stable isotopes of the water molecule indicates that this recharge comes from monsoonal activity in the north of the continent that travel some 1500 kms. Furthermore, this is restricted to recharge in the Holocene.as we move down the hydraulic gradient groundwater “ages” increase and recharge rates dramatically decrease by orders of magnitude. We conclude that there has been a significant decline in monsoonal precipitation and hence recharge in the deserts of central Australia over this time. We present a couple environmental numerical model that describes how to estimate temporal recharge rates and estimates of hydraulic conductivity from groundwater age data that can be used for groundwater management.

Abstract

The Netherlands produces about 2/3 of drinking water from groundwater. Although there is seemingly abundant groundwater, the resource needs to be carefully managed and used wisely to safeguard the resource for future generations and in case of disasters whilst also preventing negative impacts from groundwater extraction on other sectors such as nature. Provincial governments are responsible for the protection of existing groundwater abstractions for water supply against pollution. To secure groundwater resources for the future, two additional policy levels have been introduced: Provincial governments have been made responsible for mapping and protecting Additional Strategic Reserves. These allow for additional groundwater abstractions to meet growing demands in coming decades (horizon 2040/2050). The National Government is responsible for mapping and protecting the National Groundwater Reserves (NGRs) as a third level of resource protection. NGRs serve multiple goals: to protect natural groundwater capital for future generations, to provide reserves for large-scale disasters affecting water supply and to provide reserves for possible use as structural water supply in the far future (horizon 2100 and beyond). NGRs are being delineated in 3D using detailed existing geological models and the Netherlands’ national (fresh-saline) hydrological model. The dynamics of the groundwater system are analysed through scenario analyses. Reserves for potential structural use are selected such that negative impacts on nature are prevented if future abstractions are to be realised. The policies being developed must balance interests of water supply against other sectoral interests such as the green-energy transition with increased use of geothermal energy and aquifer-thermal-energy-storage.

Abstract

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition. Digital maps, 3D and 4D models of the subsurface are necessary to investigate and address issues such as groundwater quality and quantity, flood and drought impacts, renewable geo-energy solutions, availability of critical raw materials, resilient city planning, carbon capture and storage, disaster risk assessment and adaptation, and protection of groundwater-dependent terrestrial and associated aquatic ecosystems and biodiversity. For over a decade, EuroGeoSurveys, the Geological Surveys of Europe, has been working on providing harmonized digital European subsurface data through the European Geological Data Infrastructure, EGDI.

These data are invaluable for informed decision-making and policy implementation regarding the green transition, Sustainable Development Goals, and future Digital Twins in earth sciences. The database is continuously developed and improved in collaboration with relevant stakeholders to meet societal needs and facilitate sustainable, secure, and integrated management of sometimes competing uses of surface and subsurface resources.

Abstract

Groundwater level monitoring is essential for assessing groundwater’s availability, behaviour and trend. Associated with a modelling tool, groundwater level fluctuations can be predicted in the short to middle term using precipitation probabilities or meteorological forecasts. This is the purpose of the MétéEAU Nappes tool implemented by BRGM for the City of Cape Town (CoCT) in the Table Mountain Group Aquifer (TMGA). This case study shows how near real-time groundwater level monitoring can support the municipality in managing its future groundwater withdrawals. The TMGA is an important source of groundwater in the Western Cape region of South Africa. The upper Nardouw Sub-Aquifer of the TMGA is an unconfined aquifer recharged by rainfall. It had been monitored in the Steenbras area for over 10 years before CoCT started groundwater production from the Steenbras wellfield in 2021. The MétéEAU Nappes forecasting tool is already implemented on many observation wells of the French national piezometric network, where it is used for decision-making by the French administration. It allows, in particular, to anticipate several threshold levels of drought and take appropriate measures. It combines real-time water cycle measurement data with a groundwater level lumped model (e.g. Gardenia model) and extrapolates observations for the next 6 months from statistical meteorological scenarios completed with abstraction scenarios. This tool can help protect the Steenbras wellfield as a critical water source for CoCT in the TMGA. This study was financed by the French Agency for Development (AFD).

Abstract

This paper presents the results of groundwater flow modelling studies that were conducted within the scope of the PRIMA RESERVOIR project. The project’s main goal is to develop an innovative methodology to mitigate land subsidence due to excessive groundwater exploitation in water-stressed Mediterranean watersheds. This objective is achieved by integrating earth-observation-derived land subsidence rates with a coupled implementation of numerical groundwater flow and geomechanical modelling. MODFLOWbased 3-D transient flow models were constructed for the four pilot sites (the coastland of Comacchio in Italy, the Alto Guadalentín aquifer in Spain, the Gediz River basin alluvial aquifer in Turkiye and the Azraq basin in Jordan) that have different hydrogeological properties and pose different challenges concerning water management. Models were calibrated and run for similar simulation periods (2013-2021) to obtain hydraulic head drawdowns and changes in groundwater storage. Land subsidence at these sites was evaluated using Advanced Differential Radar Interferometry (A-DInSAR) on image stacks from the Sentinel-1 satellite. Subsidence rates were then compared to hydraulic head drawdown rates to identify groundwater pumping-induced subsidence areas. The comparison for all study areas suggested that locations of maximum displacements do not necessarily coincide with areas that display the largest head drawdown calculated by the flow models. Other triggering factors, such as the thickness of compressible materials, are also related to high subsidence areas.

Abstract

The interactions between groundwater and the sewerage networks of the Lens-Liévin urban communities, located in the north of France, locally lead to non-compliance in the operation of the network and the wastewater treatment plants, questioning the city’s economic development policy. Indeed, the infiltration of groundwater inflow in the sewerage network could be the cause. Based on the piezometric measurements carried out in 2022, the surface elevation of the groundwater table is carried out using a kriging approach. The comparison of altitudes between network position and piezometry made it possible to identify the pipes most at risk of the infiltration of groundwater inflow and correspond to those indicated as non-compliant by network managers according to the national decree. Outside this period, the network vulnerability indicators are defined based on simulated piezometry by a 3D hydrodynamic model of the chalky hydrosystem (MARTHE code) established in a transient state. For two past extreme situations, the network would have been flooded at 1.20% in the dry period (1997) and up to 8.30% in the wet period (2001), highlighting the existence of a part of the network systematically flooded. Using the hydrodynamic model according to different prospective scenarios makes it possible to anticipate the actions deployed on the network to guide management and adaptation solutions. However, a modelling methodology that considers the feedback between the dynamics of the groundwater and the flows passing through the networks remains to be developed.

Abstract

Coal Ash Beneficiation is a government imperative for South Africa, and Eskom generates approximately 34 million tons of coal ash annually from their 14 pulverised coal fuel plants. It is estimated that there are approximately 6,000 abandoned coal mines in South Africa, of which 2,322 are classified as high risk, contributing to subsidence and the generation of acidic mine drainage. It is envisaged that coal ash could offer a support medium for the mines and neutralise the acidic mine water due to its alkaline nature. The Department of Fisheries, Forestry and the Environment has supported the initiative but has requested a means of modelling possible contamination due to placing the coal ash in these environments. To this end, laboratory trials were completed to generate the initial model and a controlled pilot site was established to validate the model’s accuracy. This trial evaluated stabilised and unstabilised coal ash as a means of acid water management. The laboratory trials showed that the ash could neutralise the pH of the mine water from approximately 2 to 7; this was sustained for the test period. In addition, sulphate and iron were significantly reduced in the treated water. The laboratory and site work results will be detailed in this presentation.

Abstract

This research aims to evaluate the carbon storage function of a Mediterranean peatland in changing climate conditions. The scientific strategy relies on a seasonal geochemical survey sourcing the carbon origin by considering the hydrosphere, lithosphere, biosphere, and atmosphere. This unprecedented research on a Mediterranean peatland reveals the seasonality of dissolved carbon inputs from primary production, organic matter oxidation, and time-changing recharge components within the catchment (rainwater, river water, shallow groundwater, deep groundwater). Based on the mixing proportions of all recharge water components, the study applies a reverse end-member mixing analysis to define the theoretical peat water d13CDIC value and compare it to the measured ones. The model explains 65 % of the data, demonstrating the water flow influence on peatland carbon content. In 35% of the cases, peatland processes such as primary production and organic matter oxidation drive the peat water’s carbon content. Peat organic and inorganic properties, d13CTOC, and d13CCO2 data demonstrate the role of groundwater as a CO2 source and the dominance of in situ primary production that argues in favour of carbon storage within such Mediterranean peatland. This research proves the relevance of geochemistry and isotope hydrology tools to disentangle and rank peatland water and carbon processes within peatland hydro-ecosystems. Overall, it reveals the necessity to take into account the interactions between water and carbon cycle processes, with particular consideration for groundwater as a CO2 source at the peatland-atmosphere interface, to build better models for the future evolution of the global climate.

Abstract

Slug tests are preliminary tests applied to determine the hydraulic conductivity and whether it is necessary to perform a pumping test on the borehole under investigation and should never be recommended as a substitute for a pumping test. For this reason, slug tests cannot be related to sustainable yield because slug tests cannot detect boundary conditions. The aim was to develop a methodology to relate slug tests to a potential yield estimation, investigating and reviewing the applicability and accuracy of the slug test methodology in South Africa, applied on fractured rock aquifers as established in 1995. The aim was achieved by reviewing the methodology applied for slug tests that are related to potential yield estimations, identifying the limitations of slug tests, investigating the possibility of updating the potential yield estimation method of 1995, and investigating the possibility of relating slug tests, to potential yield and transmissivity estimations through groundwater modelling. The investigation revealed that using transmissivity values determined through slug test homogenous modelling can be utilised to estimate the potential yield of a borehole under investigation by implementing correlation statistics. Note that this is not an absolute and is subject to limitations.

Abstract

Streamwater and groundwater are changing in the Arctic region because of significant climate warming. Arctic amplification has intensified the melting of snow cover, glaciers and permafrost, leading to a prominent variation in the annual discharge of rivers, the groundwater occurrence, and their relationships. In high-latitude regions, evaluating groundwater flux/storage and river discharge is challenging due to a lack of hydrogeological data. Changes in river flows and groundwater discharge will alter freshwater and terrigenous material flux, with implications for freshwater and marine ecosystems. Consequently, a more timely and accurate evaluation of surface and groundwater is required. In this framework, through the ICEtoFLUX project (MUR/PRA2021/project-0027), hydrology, geophysics and geochemical-isotopic surveys have been started during 2022 in the Bayelva River catchment (W-Svalbard) from its glaciers and periglacial/proglacial systems up to the Kongsfjorden. The study aims to quantify hydrologic processes and related transport of matter (solid transport, chemical solutes flux) and investigate how subsurface and surface waters interact during active layer development. The first results suggest that electrical conductivity and total suspended solids increase from glaciers to the Bayelva monitoring station, about 1 km from the coast. Seasonal evolution of physical-chemical features was also observed. Results from geophysics data and piezometers indicate that the underground flow is spatially and temporally heterogeneous, both quantitatively and from a physicochemical-isotopic point of view. Springwater characteristics testify to a deep and well-organized groundwater flow path system. This study highlights the high complexity of these systems and their high sensitivity to the meteo-climatic regimes.

Abstract

Sand mining in southern Africa is on the rise, fuelled largely by rapid urbanisation. This creates a range of societal and biophysical challenges and supports livelihoods in regions with high unemployment. Relevant scientific studies are scarce. This study explores the impacts of sand mining from ephemeral rivers on Botswana, South Africa and Mozambique communities through field visits, interviews, modelling, remote sensing and legislative analysis. What was expected to be a hydrogeology project focussing on water resources identified a broader range of issues that should be considered. Initial results uncovered a range of negative biophysical impacts, including alteration of hydrological regimes, which in turn affect groundwater recharge and exacerbate drought and flood risks, destruction of riparian vegetation, increased erosion, damage to infrastructure (including bridges and roads), reduced water quality, and the spread of invasive plant species. Equally important are the range of social impacts, such as drowning people and livestock, loss of agricultural land, increased traffic, dust, noise and crime. Complex governance arrangements influence these social and environmental challenges. The findings highlight the need to adopt an inter- and trans-disciplinary approach that considers linkages between human and natural systems. This approach is essential for finding sustainable solutions for the provision of construction materials that limit detrimental impacts on water resources, ecosystems and livelihoods. 

Abstract

The work presented in this paper incorporates spring data for further conceptualizing the hydrogeology of northern Namibia’s so-called “Karst Area”, an area around the towns of Tsumeb, Otavi and Grootfontein. Also called the Otavi Mountainland, it can be described as a mountainous highland of parallel, east-west trending elongated valleys and ranges shaped by the underlying folded units of carbonate rocks of the Damara Supergroup. The karst aquifers are a supplementary source to the central areas of the country during drought. Most of these 35 springs are often found near hilltop crests or high up on the mountain flanks rather than lower down at the valley floors. If flows are generated locally as gravity or contact overflow springs, studying them would not add much to conceptualizing the regional groundwater flow. Fundamental insights are provided if flows arise due to hydraulic pressure from deeper down. As artesian boreholes do not occur as a rule in the Karst Area, artesian springs might indicate the presence of deeper aquifers out of reach at normal drilling depth. One such hypothesis is that the bottom of the dolomitic synclines, structurally weaker at the fold axis, had been subjected to deep-seated karstification. The work presented here investigates that possibility and argues for and against it. In addition, established concepts of groundwater flow mechanisms for the area have been revisited. A conclusion has not yet been reached, but the balance of the arguments is presented.

Abstract

Shallow groundwater dynamics play a crucial role in wetland ecosystems and are key to climate change resilience. Therefore, conserving and restoring wetland areas requires excellent knowledge of groundwater flow dynamics, which are often rapidly changing following extreme weather events and anthropogenic impacts such as groundwater extraction. Traditional methods to estimate groundwater flow require extensive modelling or rely on point measurements, missing the effect of crucial short-term events and impeding quick actions to conserve the wetlands’ ecohydrological status. Here, we present a newly developed sensor that can measure real-time groundwater flow velocity and direction. The sensor probe consists of two bidirectional flow sensors that are superimposed. It is installed in a dedicated pre-pack filter and can measure a broad range of groundwater flow velocities from 0.5 cm/ day to 2000 cm/day. With an IoT (Internet of Things) system, sensor data is wirelessly transmitted and visualized in real-time on an online dashboard. In addition, we show a selection of results from a case study in the Biebrza National Park (Poland) and a nature reserve in Damme (Belgium). In both ecosystems, we could capture changes in groundwater flow velocity and direction resulting from precipitation and evapotranspiration events. As such, we are confident that our sensors provide new insights into rapidly changing groundwater dynamics and will become an invaluable tool in ecohydrological studies worldwide, ultimately leading to more integrated management strategies to protect and conserve remaining wetlands.

Abstract

Aquifer test analysis is complex, and in many regards, the interpretation resembles an art more than a science. Under the best circumstances, aquifer test analysis is still plagued by ambiguity and uncertainty, compounded by the general lack of information on the subsurface. An approach which has seen widespread adoption in other fields that need to classify time series data is machine learning. A Python script that generates numerical groundwater flow models by interfacing directly with the modelling software produces training data for deep learning. Production yielded 3,220 models of aquifer tests with varying hydrogeological conditions, including fracture, no-flow and recharge boundary geometries. Post-processing exports the model results, and the Bourdet derivative is plotted and labelled for image classification. The image classifier is constructed as a simple three-layer convolutional neural network, with ReLU as the activation function and stochastic gradient descent as the optimizer. The dataset provided sufficient examples for the model to obtain over 99% accuracy in identifying the complexities present inside the numerical model. The classification of groundproofing data illustrates the model’s effectiveness while supporting synthetically prepared data using modern groundwater modelling software.

Abstract

Hermanus was originally supplied from springs and groundwater until the De Bos Dam was built in the 1950s. Due to increasing water demand, the municipality commenced wellfield development in 2002. The first wellfield comprised 3 boreholes, of which one borehole was later decommissioned due to reduced yield. Three additional boreholes were drilled recently to ensure abstraction capacity within the licence limits. A second wellfield was developed in the Hemel-en-Aarde Valley north of Hermanus. To ensure the sustainable management of the shared resource and minimise environmental impacts, a monitoring committee was established with all relevant roleplayers, other users, civil society, environmental groups and various commenting and regulatory authorities. A comprehensive monitoring network was established to assist with the scheme’s management and ensure that environmental impacts are minimized. The long-term monitoring (up to 20 years) shows that the groundwater abstraction from the Gateway Wellfield does not impact the environment and other users or increase the risk of saline intrusion. Identified impacts have been mitigated with the assistance of the monitoring committee. The municipality aims to provide at least half of the town’s water demand from groundwater and establish conjunctive use operation between surface water from the De Bos Dam and groundwater from these wellfields. The wellfields ensured sufficient water for the municipality when De Bos Dam’s water levels declined significantly during the Western Cape droughts in 2011 and 2017. The presentation will provide examples of the long-term monitoring records and trends.

Abstract

Underground coal gasification (UCG) is a high-temperature mining method that gasifies coal in situ to produce a synthetic gas that can be used as feedstock for industrial purposes. Coal conversion leads to mineral transformation in the gasifier, which ultimately interacts with the rebounding groundwater post-gasification. This poses a groundwater contamination risk, the biggest environmental risk from a UCG geo reactor. There is currently no model for UCG operators and regulators to assess the total risk of groundwater contamination from UCG operations. This study collates literature on groundwater contamination from UCG operations and presents a workable but comprehensive groundwater risk assessment model for a spent UCG chamber. The model follows the source-pathway-receptor arrangement where groundwater contamination sources are identified as ash, char, roof and floor. All possible pathways are assessed for hydraulic connections with the spent geo-reactor via acceptable geochemical tests, including stable isotopes, hydrochemistry and stratification analysis. Finally, the receptor aquifers (e.g. shallow aquifers) are monitored periodically to determine if contamination has occurred.

Abstract

Aquifer Thermal Energy Storage (ATES) is increasingly utilised to optimise the efficiency of Ground Source Heat Pump (GSHP) systems. However, the criteria for selecting ATES over Unidirectional GSHP is not well-defined. Inappropriate selection of AETS can adversely impact the long-term viability and the GSHP system itself, as well as regional hydraulic and thermal sustainability due to adverse groundwater levels and temperature change. This is a concern in urban aquifers, where GSHP systems are increasingly common. There is a perception that ATES is always the most efficient; however, there is no clear definition of efficiency and how it can be readily assessed at the GSHP design stage. It is proposed and demonstrated herein that GSHP efficiency can be assessed by modelling borehole pumping in lieu of complex Coefficient of Performance calculations for the whole GSHP system. Borehole pumping is a more readily definable modelling outcome for comparing options at an individual site but is also a suitable proxy for comparing efficiency at different sites when given as a flow per unit rate of pumping. Operational efficiencies for ATES versus Unidirectional systems are presented using the pumping rate criteria for modelled scenarios. Here, three model inputs are varied: 1) the balance of heating and cooling, 2) the configuration of a single borehole pair across a hydraulic gradient and 3) the hydraulic gradient itself. These were assessed using coupled groundwater flow and heat transport modelling in Feflow to refine the Goldilocks Zone, the perfect balance, for these variables.

Abstract

Recent findings allow a better insight into the interaction between two aquifers and their vulnerabilities at the groundwater extraction site of Velm, which produces drinking water for around 55,000 households. The shallow aquifer that is exploited is situated in the Formation of Hannut. This aquifer is vulnerable to pollution, especially from the agricultural lands close to the extraction site and is sensitive to natural recharge. In this case, the groundwater is captured in a basin via a naturally occurring spring flow. The second aquifer is situated in the Cretaceous at 50 to 100 m below the surface and is pumped by four wells. The drinking water quality is guaranteed by mixing and treating these two waters. To optimize the central decalcification and the pollution risks, the production volume in the deep aquifer was increased from 2017 to 2021 at the expense of the shallow aquifer. This led to a decrease in the available volumes of the shallow aquifer, which indicated a leakage from the shallow to the deeper aquifer, which was unexpected. Groundwater modelling and time series analysis have been used to assess the impact of the increased production volumes and the longer dry periods. Based on this data, a maximum production volume of 1,000,000 m3 /year is considered best for the cretaceous aquifer. With this extraction rate in the Cretaceous, it is possible to supply sufficient drinking water and limit the impact on the Formation of Hannut.

Abstract

Deploying a participatory approach for surveying the complex geohydrological system and defining the status of the groundwater resources in the Kunzila catchment area has crucial importance towards conjunctive use of its water and land resources for sustainable economic growth, social well-being, and environmental protection. Several initiatives are being undertaken to pilot the ‘Integrated Landscape Management and WASH’ project in this community to implement evidence-based approaches. A comprehensive hydrogeological study has been carried out to understand the hydrogeological system, propose ecosystem restoration measures, identify suitable locations for drilling boreholes and design a groundwater and surface water monitoring network.

The first results pointed out the central area of the catchment as holding the best potential for groundwater abstraction, a productive Late Quaternary basalt aquifer. As this area is in use by private floriculture farms, several other borehole locations were sited to meet the domestic and livelihood demand across the watershed. In addition to the drinking water supply goals, the project proposed catchment intervention for soil and water conservation based on the Landscape Approach and 3R measures implementation - Retain, Recharge, Reuse. Such measures include but were not limited to riparian vegetation restoration, terracing and contour bunds, agroforestry, controlled grazing, etc. A telemetric monitoring network has been designed and installed to support the conjunctive management of shallow and deep groundwater water resources, streams and Lake Tana, together with a functional dashboard for data registrations and sharing. The monitoring program gauges the impact of groundwater abstraction and the quality parameters.

Abstract

Stable isotopes of the water are widely used in volcanic contexts to identify the recharge area, thanks to a strong orographic effect. Such data help improve the study areas’ conceptual model, especially to identify flow paths through the volcanic edifice. The most common pattern considered is a high to medium-elevation recharge area on a flank of the volcano, feeding both local perched aquifers and a deep basal aquifer. This is quite common for “shield volcanoes”, with the flank comprising a thick accumulation of lava flows. On composite volcanoes, especially in a volcanic arc context, the large diversity of lithologies (effusive/ destructive events dynamics) along the flanks may create a compartmented aquifers system. The Arjuno-Welirang-Ringgit volcanic complex (East Java) has been studied to elaborate a hydrogeological conceptual model. Stable isotopes of the water show significant results in identifying the recharge areas of several aquifers that are outflowing at a similar range of elevation. These results help to propose a water flow pattern from the recharge areas to the main springs with juxtaposed and superposed aquifers. This also leads to constraining the geometry of the aquifers and concluding that one volcanic complex with several recharge areas can feed juxtaposed aquifers. These results also highlight the need to adapt the study scale to each “point of interest” in the volcanic context, as each spring shows a different flowing pattern, preferential recharge elevation, and surface area. These are mandatory data to propose an adapted groundwater management.

Abstract

Groundwater is the most important source of potable water in rural areas of Acholiland, a sub-region of northern Uganda. Installation of handpumps has been the focus of local government and international aid to provide safe drinking water in Uganda. However, non-functional handpumps are one reason for the abandonment of groundwater resources. For handpumps to be sustainable for years, appropriate siting and construction is required, as well as monitoring. This is common knowledge to specialists working in rural supply, but gaps in knowledge transfer and field skills may exist for the persons installing and maintaining handpump wells. This is a case study of a ten-day field campaign designed to train local participants who actively work in the rural groundwater supply sector. Nine non-functional handpump sites were identified for repair and hydrogeology and geophysical studies. A non-governmental organization, IsraAID, along with Gulu University implemented training by hydrogeology specialists to build local capacity. The training included handpump functionality tests, downhole inspections, electrical resistivity tomography surveys, and water quality sampling, including a novel Escherichia coli test that did not require an incubator. Functionality tests and downhole inspections provided simple but effective ways to assess handpump and well issues. Training in water quality empowered the participants to complete rapid assessments of the quality of the water and start monitoring programs. The success of the project was based on collaboration with multiple organizations focusing on the development of local capacity. The lessons learnt from this campaign should be considered for other rural groundwater supply scenarios.

Abstract

The interaction between groundwater and wetlands is poorly understood, even though it has been the topic of many research projects, like the study done at the Langebaan Lagoon. This interaction is complex as it lies at the intersection between groundwater and surface water, but each situation is unique, with different conditions regulating the interaction. Wetlands can be the source of water that recharges groundwater systems on the one hand, while the other is dependent on the groundwater systems. This interaction became part of the project looking at how to implement Managed Aquifer Recharge for Saldanha Bay Local Municipality without having a negative impact on the groundwater-dependent ecosystems, such as the springs and wetlands in the area. Ten wetlands were identified on the Langebaan Road Aquifer Unit, and a monitoring programme was developed. The purpose of the monitoring was to determine the status of the wetlands as a baseline before the implementation of managed aquifer recharge and to determine the level of groundwater dependence. The latter was done by hydrochemical analysis of rainwater, groundwater and water from the wetlands and stable isotope analysis. The ability of the wetlands to act as a recharge point to the groundwater system will be investigated through column experiments and lithostratigraphic analysis of soil columns taken at the wetlands. Groundwater levels will also be plotted as contour lines to determine the intersection of the water table with the wetlands in the area.

Abstract

The 16th Lum Nam Jone reservoir is located in Chachoengsao Province, Thailand. Since 2019, water has become highly acidic with a pH of 2.5-3.5 and contaminated by heavy metals. The groundwater plume is associated with high concentrations of Iron (60 – 3,327 mg/L), Manganese (38 – 803 mg/L), Copper (5 –500 mg/L), Zinc (11 –340 mg/L), and high Total Dissolved Solids (2,600 –23,000 mg/L). The hydrogeochemical assessment confirmed that the contamination is related to the molybdenum ore processing plant located upgradient. The industrial wastewater was illegally discharged underground and flowed to the reservoir due to a hydraulic gradient. The main objective of this research is to evaluate the efficiency of different reactive materials for In-situ remediation using a permeable reactive barrier (PRB). The experiment column setup showed that marl has the highest efficiency in elevating pH by 3.6 units. The Fe, Cu, and Zn removal rates by crushed shells were 100, 98, and 60%, respectively. The Fe, Cu, and Zn removal rates by limestone were 100, 73, and 32%, respectively. The Fe, Cu, and Zn removal rates by marl were 100, 100, and 48%, respectively. Regarding the laboratory-scale experiment, the pilot PRB was installed upstream of the reservoir. The PRB was filled with marl at the bottom, overlain by limestone, and then covered with the uppermost rice straw layer. The pH increased by 2.6 units inside PRB (from pH 3.1 to 5.7). A reduction of about 50% in Fe, 85% in Cu, and 50% in Zn had been achieved.

Abstract

Italian urban areas are characterized by centuries-old infrastructure: 35% of the building stock was built before 1970, and about 75% is thermally inefficient. Besides, between 60% and 80% of buildings’ energy consumption is attributed to space heating. Open-loop Groundwater Heat Pumps (GWHPs) represent one of the most suitable solutions for increasing the percentage of energy consumption from Renewable Energy Sources (RES) in cities such as Turin city (NW Italy). However, allowing the diffusion of GWHPs cannot be disregarded by the knowledge about hydrogeological urban settings. As the thermally affected zone (TAZ) development could affect energetically adjacent systems, the TAZ extension must be well-predicted to guarantee the systems’ long-term sustainable use. Different buildings of the Politecnico di Torino are cooled during the summer by 3 different GWHP systems. To investigate possible interactions with other neighbouring plants and to preserve the water resource by capturing its positive and productive aspects from an energy point of view, a complex urban-scale numerical model was set up for comprehensively analysing the impact of the geothermal plants on the shallow aquifer. Different simulation scenarios have been performed to define possible criteria for improving the energy functionality of the groundwater resource. Besides, the extent of the TAZ generated was defined as a function of the specific functioning modes of the different GWHP systems. Numerical simulations, legally required by competent authorities, represent a fundamental tool to be applied for defining hydrogeological constraints derived from the GWHPs diffusion in Italian cities.

Abstract

Degradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production.

Abstract

The intermediate vadose zone underlies the plant root zone and comprises soil and rock. Different soils have different hydraulic and mechanical properties, and the vertical and spatial distributions are variable at a small scale. In South Africa, except for the Cenozoic and Quaternary deserts and coastal deposits, rock forms most of the vadose zone, and the rock fractures exacerbate the complexity. The vadose zone is observed at a small scale and dictates what happens in large scale, as adhesion to mineral surfaces happens first, and cohesion between water molecules is next. The original consideration of the intermediate vadose zone was a black box approach measuring what goes in from the surface and what goes out as groundwater recharge, not accounting for the movement of the vast majority of the freshwater supplied through precipitation. That doesn’t address the preferential flow, velocity, and pore water changes in the medium. Soil science addresses the soil or plant root zone very well. This zone governs the vertical movement of water and controls the ecosystems and biodiversity. However, all evapotranspiration disappears below this zone, and capillarity and gravity both move water into and through the intermediate vadose zone. Movement is no longer solely vertical and will be affected by soil types, intergranular porosity in soil and rock, changing water content, and secondary fractures with different properties in rock. This presentation will cover concepts and advances in this field, emphasising how and why water moves in the intermediate vadose zone.

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

The Kalahari iron manganese field (KIMF) in the Northern Cape, South Africa, was historically exploited by only three mines, with Hotazel the only town and the rest of the area being largely rural, with agricultural stock/ game farming the major activity. Since 2010, mining activities have increased to more than 10 operational mines with increased water demand and environmental impacts on groundwater. The area is within catchments of the Matlhwaring, Moshaweng, Kuruman and Gamogara rivers that drain to the Molopo River in the Northern Cape. All the rivers are non-perennial, with annual flow occurrence in the upstream areas that reach this downstream area once every 10 years. The area is semi-arid, with annual evaporation nearly five times the annual precipitation. The precipitation is less than 300mm, with summer precipitation in the form of thunderstorms. Vegetation is sparse, consisting mainly of grasslands, shrubs and some thorn trees, notably the majestic camel thorns. The Vaal Gamagara Government Water Supply Scheme imports 11 Ml/d or 4Mm3 /a water for mining and domestic purposes in the KIMF section. The area is covered with Kalahari Group formation of 30 to 150 m thick with primary aquifers developed in the basal Wessels gravels and Eden sandstones for local use. The middle Boudin clay forms an aquitard that isolates and reduces recharge. Water levels range from 25 to 70m, and monitoring indicates local dewatering sinks and pollution. This study will report on the water uses, monitoring and observed groundwater impacts within the current climatic conditions.

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Aquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow. In this study, we evaluated the impact of these factors by adapting and developing analytical solutions and numerical modelling, with recently established Urban ASR systems as a reference for a wide range of realistic field conditions. We validated the accuracy and usefulness of the analytical solutions for performance anticipation. Results showed that a simple, analytically derived formula describing dispersion losses solely based on the dispersion coefficient (α) and the hydraulic radius of the injected volume (Rh) provided a very good match for all conditions tested where α/Rh<0.2. An expansion of the formula to include the development of recovery efficiency with subsequent cycles (i) was also derived and in keeping with simulation results. Also, displacement losses were found to be significant at groundwater flow velocities that are typically considered negligible, particularly as displacement and dispersion losses disproportionally enforced each other. For specific conditions where the displacement losses are dominant, using a downgradient abstraction well, effectively resulting in an ASTR system, might be beneficial to increase recovery efficiencies despite increased construction costs and design uncertainty.

Abstract

The use of radiogenic isotope tracers, produced through bomb testing (e.g. 3H and 14C), and the application of these isotopes is yet to be fully explored now that atmospheric abundances have returned to background levels. New isotope-enabled institutions and laboratories have recently been established in developing countries to apply isotopes in practical research. This study utilized several laboratories in South Africa and in Europe to compile a robust hydrochemical (major cations and anions) and isotope (d18O, d2H, 3H, 14C, 86Sr/87Sr) dataset of groundwater from 95 sample locations in the Maputo province of Mozambique. Groundwater is hosted in different aquifers and recharged through variable mechanisms ranging from direct infiltration of exposed alluvial soils to inter-aquifer transfer between fractured aquifer systems in the mountainous regions and the weathered bedrock in the lowlands. A combination of hydrochemistry and isotopes provided insight into the heterogeneous nature of recharge, mixing of modern and fossil groundwaters, and aquifer vulnerabilities when combined with other physical parameters in the region. However, it is also clear that grab sampling over a regional spatial extent and two sampling seasons (wet and dry) did not capture all the system variability, and more regular monitoring would uncover details in the system’s behaviour not captured in this study.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

South Africa is known for droughts and their effect on groundwater. Water levels decrease, and some boreholes run dry during low recharge periods. Groundwater level fluctuations result from various factors, and comparing the levels can be challenging if not well understood. Fourie developed the “Groundwater Level Status” approach in 2020 to simplify the analysis of groundwater level fluctuations. Groundwater levels of two boreholes within different hydrogeological settings can thus be compared. The “Status” can now indicate the severity of the drought and thus be used as a possible groundwater restriction level indicator. The reasons for the groundwater level or the primary stress driver can only be determined if the assessment is done on individual boreholes and the boreholes according to hydrogeological characteristics. The analysis is used to identify areas of risk and inform the authorities’ management to make timely decisions to prevent damage or loss of life or livelihoods. The applicability of this approach from a borehole to an aquifer level is showcased through practical examples of the recent droughts that hit South Africa from 2010-2018.

Abstract

Case studies illustrate a conceptual framework for shallow groundwater flow systems’ temporal and spatial variability with groundwater-surface water interactions in the Boreal Plains of Canada. The framework was developed using a twenty-year hydrometric dataset (e.g., climatological and streamflow data, hydraulic heads, vertical hydraulic head gradients, geochemical and isotopic signatures). The region is characterized by low-relief glacial landscapes, with a mosaic of forestlands and peatlands, and a subhumid climate, resulting in spatially heterogeneous storage and transmission properties, variable recharge and evapotranspiration potentials, and highly complex patterns of water movement. Two primary spatiotemporal scales were examined to create a holistic, variable-scale conceptual model of groundwater movement: the large scale (e.g., glacial landforms, regional topography, decadal climate cycles) and the small scale (e.g., individual landcover, local hummocks, annual moisture deficits). Water table behaviour, evapotranspiration rates, and runoff were controlled by a hierarchy of interactions between hydrological processes occurring at different spatiotemporal scales; however, the specific order of controls depends on the hydrogeological setting. The case studies, supported by empirical and numerical modelling, demonstrate that smaller-scale heterogeneities in geology and recharge can dominate over topographic controls, particularly in areas with high conductivity or hummocky terrain, where the climate, geology, and topographic relief are similar. Many hydrogeological studies rely on surface topography as a first‐order control; however, with field observations and modelling, this conceptual framework demonstrates the need to consider the potential dominance of subsurface characteristics and processes, plus climate, especially in landscapes with low recharge and low relief.

Abstract

The results of a full field application of a DNA-based nano tracer in an arenitic aquifer are presented along with the comparison with the breakthrough of a classical tracer injected in parallel. DNA is encapsulated into amorphous silica spheres (nanoparticles), protecting the molecule from chemical and physical stresses. The main advantages of using DNA with classical tracers, like ionic or fluorescent, are the lower detection concentration and the chance to perform multi-tracer tests with many distinct signatures of injection. To the authors’ best knowledge, this is the first tracing adopting nano-particles on full field conditions in a sedimentary fractured aquifer. Preliminary tests in the lab were performed adopting either deionized water or groundwater collected at the experimental site: a set of nanoparticles at a known concentration was dissolved by adding a buffered fluoride solution, and DNA was then quantified by qPCR reaction (SYBR green). The hydrogeological setting is represented by a Miocenic marine arenitic aquifer (Pantano formation) outcropping extensively in Northern Apennines (Italy) and the main groundwater reservoir for public water supply through the uptake of many perennial springs. The main purpose of the tracing was to verify the transmissive capacity of fractures with high aperture (15-20 cm) identified by optical and acoustic televiewers inside an 80 m deep borehole. The injection was performed inside the borehole, and the tracer’s recovery was between 5-15 m, both in the uptake points of two perennial springs and in another borehole drilled nearby.

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

Recharge is an important factor in Water Resources Management as it is often used as a measure for sustainable groundwater abstraction and resource allocation. The recharge estimation is, however, linked to a specific time, area and conditions and then generalised over seasons and years. Current climate change estimations predict a warmer and drier future for western parts of southern Africa. Groundwater recharge estimation methods do not consider changes in climate over the short term and do not consider the longer trends of a changing climate. This article looks at the various methodologies used in recharge estimations and their application in a changing world, where rainfall period, pattern and intensity have changed, where higher temperatures lead to higher actual evapotranspiration and where there is a greater need for water resources for use in agriculture, industry and domestic use. Our study considers the implications of current recharge estimation methods over the long term for water allocation and water resources management of groundwater resources from local and aquifer catchment scale estimations.

Abstract

In this study, we assess the potential of large riverbed aquifers in semi-arid Africa, known as sand rivers, to mitigate water scarcity and salinity for multiple-use water supply through a case study of the Limpopo River in Mozambique. Such sand river systems are widespread and still heavily underused at a regional scale, particularly in Mozambique, with the riparian vegetation currently being the primary user, though only consuming a minor fraction of available water. At a local scale, we performed geoelectrical surveys, water level measurements (in river and groundwater), as well as field physicochemical measurements and hydrochemical and isotopic sampling at 38 locations in the river channel, margins and up to 6 km away from the river, over five years. Results show that these shallow systems can be up to a kilometer wide and 15 m thick and, at some locations, can extend laterally beyond the river channel, below thin layers of clay and silt. Large areas of the sand river channel carry runoff yearly, providing optimal conditions for rapid recharge into the coarse sands with a high storage capacity. Connectivity between the river margin and channel is clearly shown at the local scale, even though sand pockets located further away appear isolated (revealed by geophysics), isotopically different and more brackish. Recharge, evapotranspiration and mixing processes are confirmed through hydrogeochemical modelling. The proven connectivity is highly relevant as groundwater is abstracted locally, promoting socio-economic development in water-scarce regions.

Abstract

Since 2018, the North China Plain has started a large-scale ecological water replenishment project for rivers and lakes, with 17.5 billion cubic meters total from the South–North Water Transfer Project and other water sources. It is a key question of how much water infiltration into aquifers will affect groundwater and how to characterize and evaluate this effect quantitatively. The groundwater numerical model of the Beijing-Tianjin- Hebei region as the main part of the North China Plain was established using a numerical simulation method, and the groundwater level variation under the replenishment condition was simulated and predicted. By comparing the two scenarios, the relative rise method of groundwater level was proposed to characterize the influence of river water infiltration on groundwater level, and the unstructured grid method was used to refine cells near the river to improve simulation accuracy. Simulation results show that the groundwater level around some rivers has risen significantly in the past four years, especially in the alluvial fan regions with better infiltration properties. Accordingly, at the Piedmont alluvial fan region, there is also a large influence range on groundwater level. The maximum influence distance is more than 10km (0.1m relative rise of groundwater level was taken as the influential boundary). According to the prediction, if the water replenishment project continues, the range of influence can continue to expand, but the expansion rate will slow down due to the reduction of the hydraulic gradient.

Abstract

Electromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure.

Abstract

The occurrence of emerging organic contaminants (EOCs) in the aquatic environment is of no surprise since these are applied for various purposes daily. This study investigated the changes in EOCs concentrations in the water between 2019 and 2020. During rainy seasons, samples were collected from dams and surrounding boreholes in the Eastern Basin of the Witwatersrand Goldfields. During the first and second laboratory analyses, 24 and 11 analytes were screened in the water samples. The findings indicated that in 2020, compounds such as caffeine, sulfamethoxazole, atrazine and metolachlor displayed detection frequency exceeding 2019. This indicates that the occurrence of these compounds in the aquatic system has increased within a year. Whilst carbamazepine was still traced in 12 sites as previously observed in 2019, compounds estradiol, estrone, bisphenol A and ibuprofen were traced in fewer sites than they were detected in 2019. Compounds 4-nonylphenol, methylparaben, caffeine and atrazine were detected in all the samples analysed for 2019 and 2020, respectively. Antiretrovirals (ARVs) were analysed once and were detected in most sites, with efavirenz registering the highest (12/18) detection frequency. Assessing the occurrence of EOCs in boreholes according to the depth indicated that bisphenol A and estrone were traced in greater concentrations in deep than shallow aquifers, whilst the opposite was observed for atrazine. This study showed groundwater susceptibility to contamination by EOCs, with concentrations of most compounds increasing with time due to their high usage and improper sewer systems in the area.

Abstract

Salinization is one of the main threats to groundwater quality worldwide, affecting water security, crop productivity and biodiversity. The Horn of Africa, including eastern Ethiopia, northeast Kenya, Eritrea, Djibouti, and Somalia, has natural characteristics favouring high groundwater salinity. However, available salinity data are widely scattered, lacking a comprehensive overview of this hazard. To fill this gap, machine learning modelling was used to spatially predict patterns of high salinity with a dataset of 6300 groundwater quality measurements and various environmental predictors. Maps of groundwater salinity were produced for thresholds of 800, 1500 and 2500 μS/cm. The main drivers include precipitation, groundwater recharge, evaporation, ocean proximity, and fractured rocks. The combined overall model accuracy and area under the curve of multiple runs were both ~81%. The salinity maps highlight the uneven spatial distribution of salinity, with the affected areas mainly located in arid, flat lowlands.

These novel and high-resolution hazard maps (1 km2 resolution) further enable estimating the population potentially exposed to hazardous salinity levels. This analysis shows that about 11.5 million people (~7% of the total population) living in high-salinity areas, including 400,000 infants and half a million pregnant women, rely on groundwater for drinking. Somalia is the most affected country, with an estimated 5 million people potentially exposed. The created hazard maps are valuable decision-support tools for government agencies and water resource managers in helping direct salinity mitigation efforts